首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   15篇
化学   125篇
力学   2篇
数学   10篇
物理学   35篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   5篇
  2019年   7篇
  2018年   2篇
  2017年   1篇
  2016年   10篇
  2015年   8篇
  2014年   3篇
  2013年   10篇
  2012年   18篇
  2011年   16篇
  2010年   7篇
  2009年   4篇
  2008年   9篇
  2007年   8篇
  2006年   10篇
  2005年   5篇
  2004年   10篇
  2003年   3篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1992年   1篇
  1991年   3篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
51.
J coupling in NMR spectroscopy is conventionally associated with covalent bonds. A noncovalent contribution often called through-space coupling (TSC) has been observed for heavy atoms. In this study, the TSC was detected and analyzed for the more common (1)H-(1)H coupling as well. In synthesized model molecules the hydrogen positions could be well controlled. For several coupling constants the through-space mechanism was even found to be the predominant factor. The nature and magnitude of the phenomenon were also analyzed by density functional computations. Calculated carbon- and hydrogen-coupling maps and perturbed electronic densities suggest that the aromatic system strongly participates in the noncovalent contribution. Unlike covalent coupling, which is usually governed by the Fermi contact, TSC is dominated by the diamagnetic term comprising interactions of nuclei with the electron orbital angular momentum. The computations further revealed a strong distance and conformational dependence of TSC. This suggests that the through-space coupling can be explored in molecular structural studies in the same way as the covalent one.  相似文献   
52.
We report here the structure of complexes made of proteins (lysozyme, positively charged) and polyelectrolytes (PSSNa, negatively charged). We stay in conditions where the volume fractions of the components are of the same order and where PSS concentrations correspond to a semidilute regime. The final complexes structure is determined by SANS. We obtain three main types of structures: (i) For a protein excess and for long polyelectrolyte chains, the network preformed by PSS chains still exists but chains are partially shrunk due to cross-linking by lysozyme. Macroscopically, samples are gelled. (ii) For a protein excess and for short polyelectrolyte chains, PSS chains are locally shrunk and do not form a network anymore. Lysozyme and PSS chains are embedded in dense 3-D aggregates that arrange in a fractal network at a larger scale. Macroscopically, samples are liquid. (iii) For a polyelectrolyte excess and whatever the chain length, the internal structure of the lysozyme changes. After an initial strong electrostatic binding, lysozyme is progressively unfolded thanks to a hydrophobic contact with PSS. The two chainlike objects are finally organized in a homogeneous costructure. Macroscopically, samples are liquids.  相似文献   
53.
Electrospray ionization (ESI) mass spectrometry (MS) has been used in conjunction with computer modeling to investigate binding tendencies of alkali metal cations to low molecular weight solvents. Intensities of peaks in ESI mass spectra corresponding to solvent-bound alkali metal cations were found to decrease with increasing ionic radii (Li+ > Na+ > K+ > Cs+) in either dimethylacetamide (DMAc) or dimethylformamide (DMF). When a lithium or sodium salt was added to an equimolar mixture of DMF, DMAc, and dimethylpropionamide (DMP), the intensities of gas-phase [solvent + alkali cation]+ peaks observed in ESI mass spectra decreased in the order DMP > DMAc ≫ DMF. A parallel ranking was obtained for alkali metal cation affinities in ESI-MS/MS experiments employing the kinetic method. These trends have been attributed to a combination of at least three factors. An inductive effect exhibited by the alkyl group adjacent to the carbonyl function on each solvent contributes through-bond electron donation to stabilize the alkali metal cation attached to the carbonyl oxygen. The shift in the partial negative charge at the oxygen binding site with increasing n-alkyl chain length (evaluated via computer modeling), however, cannot fully account for the mass spectrometric data. The increasing polarizability and the augmented ability to dissipate thermal energy with increasing size of the solvent molecule are postulated to act in conjunction with the inductive effect. Further evidence of these contributions to solvent–cation binding in ESI-MS is given by the relative intensities of [solvent + Li]+ peaks in mixtures containing equimolar quantities of alcohols, indicating preferential solvation of Li+ in the order n-propanol > ethanol > methanol. These experiments suggest a combined role of polarizability, the inductive effect, and solvent molecule size in determining relative intensities of solvated cation peaks in ESI mass spectra of equimolar mixtures of homologous solvents.  相似文献   
54.
Synthesis and applications of organotin(II) sulfide ({2,6‐(Me2NCH2)2C6H3}Sn)2(μ‐S) ( 1 ), organotin(II) thiophenolate {2,6‐(Me2NCH2)2C6H3}Sn(SPh) ( 2 ) and organotin(IV) heptasulfide {2,6‐(Me2NCH2)2C6H3}2Sn2S7 ( 3 ) as potential single‐source precursors (SSPs) for the deposition of SnS or SnS2 thin films using a spin‐coating method are reported. Compounds 1 , 2 and 3 differ either by tin oxidation state or by Sn:S ratio (Sn:S = 2:1 in 1 , 1:1 in 2 and 2:7 in 3 ). It is shown that compound 1 is not a suitable SSP for thin‐film fabrication using the spin‐coating process because of its incomplete decomposition at annealing temperature. However, compounds 2 and 3 seem to be promising SSPs for spin‐coating of amorphous semiconducting thin films of SnS and SnS2, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
55.
The binding of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to a negatively charged natural polysaccharide (pectin) at air-solution interfaces was investigated on single interfaces and in foams, versus the linear charge densities of the polysaccharide. Besides classical methods to investigate polymer/surfactant systems, we applied, for the first time concerning these systems, the analogy between the small angle neutron scattering by foams and the neutron reflectivity of films to measure in situ film thicknesses of foams. CTAB/pectin foam films are much thicker than the pure surfactant foam film but similar for high- and low-charged pectin/CTAB systems despite the difference in structure of complexes at interfaces. The improvement of the foam properties of CTAB bound to pectin is shown to be directly related to the formation of pectin-CTAB complexes at the air-water interface. However, in opposition to surface activity, there is no specific behavior for the highly charged pectin: foam properties depend mainly upon the bulk charge concentration, while the interfacial behavior is mainly governed by the charge density of pectin. For the highly charged pectin, specific cooperative effects between neighboring charged sites along the chain are thought to be involved in the higher surface activity of pectin/CTAB complexes. A more general behavior can be obtained at lower charge density either by using a low-charged pectin or by neutralizing the highly charged pectin in decreasing pH.  相似文献   
56.
Resonance Raman optical activity (RROA) spectra with high sensitivity reveal details on molecular structure, chirality, and excited electronic properties. Despite the difficulty of the measurements, the recorded data for the Co(III) complex with S,S-N,N-ethylenediaminedisuccinic acid are of exceptional quality and, coupled with the theory, spectacularly document the molecular behavior in resonance. This includes a huge enhancement of the chiral scattering, contribution of the antisymmetric polarizabilities to the signal, and the Herzberg-Teller effect significantly shaping the spectra. The chiral component is by about one order of magnitude bigger than for an analogous aluminum complex. The band assignment and intensity profile were confirmed by simulations based on density functional and vibronic theories. The resonance was attributed to the S0S3 transition, with the strongest signal enhancement of Raman and ROA spectral bands below about 800 cm−1. For higher wavenumbers, other excited electronic states contribute to the scattering in a less resonant way. RROA spectroscopy thus appears as a unique tool to study the structure and electronic states of absorbing molecules in analytical chemistry, biology, and material science.  相似文献   
57.
The detailed electronic structures of fluorescent chromophores are important for their use in imaging of living cells. A series of green fluorescent protein chromophore derivatives is examined by magnetic circular dichroism (MCD) spectroscopy, which allows the resolution of more bands than plain absorption and fluorescence. Observed spectral patterns are rationalized with the aid of time‐dependent density functional theory (TDDFT) computations and the sum‐over‐state (SOS) formalism, which also reveals a significant dependence of MCD intensities on chromophore conformation. The combination of organic and theoretical chemistry with spectroscopic techniques also appears useful in the rational design of fluorescence labels and understanding of the chromophore's properties. For example, the absorption threshold can be heavily affected by substitution on the phenyl ring but not much on the five‐member ring, and methoxy groups can be used to further tune the electronic levels.  相似文献   
58.
59.
From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Cs+(aq) + 1·Na + (nb) = 1·Cs+(nb) + Na+(aq) taking place in the two-phase water-nitrobenzene system (1 = lithium ionophore VIII; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (Cs+, 1·Na+) = ?0.5 ± 0.1. Further, the stability constant of the 1·Cs+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log β nb (1·Cs+) = 4.8 ± 0.2. Finally, by using quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Cs+ was derived. In the resulting complex, the “central” cation Cs+ is bound by six bond interactions to the corresponding six oxygen atoms of the parent ligand 1.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号