The effect of Bi addition on precipitation and dissolution, in Cu–9at% In and Cu–5at% Sb supersaturated solid solutions, has been studied by several complementary techniques. Differential Dilatometry and Differential Scanning Calorimetry permit only the analysis of the δ phase dissolution kinetic in sufficiently aged samples. Delayed spheroidization due to Bi segregation around the precipitated lamellae, observed by Transmission Electron Microscopies in the first alloy, gives a residual interfacial energy leading to accelerated δ phase dissolution with decreased activation energy. Kinetics parameters evolution indicates a progressive δ phase continuous dissolution which makes available a small chemical driving force at high temperatures and leads to an increasing activation energy during dissolution. However, Bi dispersed particles in the second alloy haven’t effect on the dissolution but they cause a contraction above 833 K. Kinetics parameters evolution indicates rapid δ phase dissolution that shifted to high temperatures where an important chemical driving force for solution treatment is available. It leads to almost constant activation energy.
1,2,3,4‐tetrahydro‐2,2‐dimethyl‐6‐(trifluoromethyl)‐8‐pyridono[5,6‐g]quinoline (TDPQ), a selective nonsteroidal androgen receptor (AR) ligand, is a fluorescent compound. We characterized its spectral properties in comparison with the structural precursor carbostyril 151 (C151) and with its racemic structural isomer 4‐ethyl‐1,2,3,4‐tetrahydro‐6‐(trifluoromethyl)‐8‐pyridino[5,6‐g]quinoline (ETPQ). The absorption maximum in CH3CN of either TDPQ or ETPQ is 400 nm whereas that of C151 is 350 nm. The fluorescence lifetimes (τ) and quantum yields (?f) in CH3CN are typical of fluorescent dyes: TDPQ (4.2 ns, 0.8) and ETPQ (4.6 ns, 0.76). C151 showed lower τ and ?f of 0.2 ns and 0.02, respectively. TDPQ can function as a fluorescent label at (sub)micromolar concentrations. We detected TDPQ fluorescence in human breast tumor cells using confocal microscopy. While the fluorescence maxima of the compounds were solvent insensitive, the ?f for ETPQ decreased in aqueous solutions regardless of the presence of albumin or DNA. The ?f of TDPQ was less affected. The quantum yield of singlet oxygen (1O2) photosensitization (?so) by TDPQ and ETPQ was about 7% in CH3CN, sufficient to induce photocytotoxicity. TDPQ was photocytotoxic in AR‐positive MDA‐MB‐453 breast cancer cells but not in AR‐negative MDA‐MB‐231 cells. The combination of AR selectivity with photocytotoxicity makes TDPQ a promising candidate for selective targeting of AR‐positive cells during photodynamic therapy. 相似文献
Yttria stabilised zirconia (YSZ) based (Zr,Y,U)O2−x and (Zr,Y,Np)O2−x solid solutions with 6 and 20 mol% actinide were prepared with Y/Zr ratios ranging from 0.2 to 2.0 to investigate uranium and neptunium oxidation behaviour depending on the oxygen vacancies in the defect fluorite lattice. Sintering at 1600 °C in Ar/H2 yields a cubic, fluorite-type structure with U(IV) and Np(IV). Annealing (Zr,Y,U)O2−x with Y/Zr=0.2 at 800 °C in air results in a tetragonal phase, whereas (Zr,Y,U)O2−x with higher Y/Zr ratios and (Zr,Y,Np)O2−x retain the cubic structure. XANES and O/M measurements indicate mixed U(V)-U(VI) and Np(IV)-Np(V) oxidation states after oxidation. Based on X-ray diffraction, O/M and EXAFS measurements, different oxidation mechanisms are identified for U- and Np-doped stabilised zirconia. In contrast to U, excess oxygen vacancies are needed to oxidise Np in (Zr,Y,Np)O2−x as the oxidation process competes with Zr for oxygen vacancies. As a consequence, U(VI) and Np(V) can only be obtained in stabilised zirconia with Y/Zr=1 but not in YSZ with Y/Zr=0.2. 相似文献
In this paper, examination of the aerial parts of seven Senecio species from Serbia and Montenegro is reported. Phytochemical investigation of Senecio erucifolius led to the isolation and characterization of semiquinol butyl 2-(1-hydroxy-4-oxocyclohexa-2,5-dienyl)acetate (I), along with methyl 2-(1-hydroxy-4-oxocyclohexa-2,5-dienyl)acetate (jacaranone, II), and methyl 2-(4-hidroxyphenyl)acetate (III). The structure of I was established based on spectroscopic studies (1H- and 13C-NMR, IR, and CI-MS). Compound II was also isolated from S. carpathicus and S. subalpinus. The presence of jacaranone in the methanol extracts of S. wagneri, S. othonnae, and S. paludosus was confirmed by LC/ESI-TOF MS. 相似文献
The behaviour of 95Zr and 95Nb isotopes on TEVA® resin column was studied. The influence of hydrofluoric, hydrochloric, oxalic and sulphuric acids on the separation and chemical yield of zirconium and niobium was tested. The method is suitable for the separation of 93Zr and 94Nb isotopes from hydrofluoric, hydrochloric and sulphuric acid by using different concentrations of the acid for the load or elutes solutions. Samples from reactor and fuel assemblies such as the control-rod connection rod, shielding/absorber parts of fuel rods, neutron in-core measurement channels, pressure vessel basic construction material and internal cladding, core barrel and reactor protection tube unit were analysed. 相似文献
Thermodynamic instability of positive electrodes (cathodes) in Li-ion batteries in humid air and battery solutions results in capacity fading and batteries degradation, especially at elevated temperatures. In this work, we studied thermal interactions between cathode materials Li2MnO3, xLi2MnO3.(1???x)Li(MnNiCo)O2,LiNi0.33Mn0.33Co0.33O2, LiNi0.4Mn0.4Co0.2O2, LiNi0.8Co0.15Al0.05O2 LiMn1.5Ni0.5O4, LiMn(or Fe)PO4, and battery solutions containing ethylene carbonate (EC) or propylene carbonate (PC), dimethyl carbonate (DMC) or ethylmethyl carbonate (EMC) and LiPF6 salt in the temperature range of 40–400 °C. It was found that these materials are stable chemically and well performing in LiPF6-based solutions up to 60 °C. The thermal decomposition of the electrolyte solutions starts >180 °C. The macro-structural transformations of cathode materials upon exothermic reactions were studied by transmission electron microscopy (TEM), X-ray difraction (XRD) and Raman spectroscopy. Differential scanning calorimetry (DSC) studies have shown that the exothermic reactions in the temperature range of 60–140 °C lead to partial decomposition of both the cathode material and electrolyte solution. The systems thus formed consisted of partially decomposed solutions and partially chemically delithiated cathode materials covered by reactions products. Thermal reactions terminate and this system reaches equilibrium at about 120 °C. It remains stable up to the beginning of the solution decomposition at about 180 °C. The increased content of surface Li2CO3 is found to significantly affect the thermal processes at high temperature range due to extensive exothermic decomposition at low temperatures. 相似文献
Terminal di-, tri-, tetra-, and pentaynes substituted with a variety of functional groups react with benzyl azide in the presence of CuSO(4)·5H(2)O and ascorbic acid to give derivatives of 4-ethynyl-, 4-butadiynyl-, 4-hexatriynyl-, and 4-octatetraynyl-1,2,3-triazoles in moderate to good yields. These reactions appear to proceed regioselectively, and functionalization occurs exclusively at the terminal alkyne moiety. As well, no evidence of multiple azide additions to the polyyne framework is observed. X-ray crystallographic analysis of nine derivatives is used to document the regioselectivity of the reaction as well as outline structural characteristics of the 1,2,3-triazole products. 相似文献
Permeation of ions through open channels and their accessibility to pore-targeting drugs depend on the pore cross-sectional dimensions, which are known only for static X-ray and cryo-EM structures. Here, we have built homology models of the closed, open and desensitized α1β2γ2 GABAA receptor (GABAAR). The models are based, respectively, on the X-ray structure of α3 glycine receptor (α3 GlyR), cryo-EM structure of α1 GlyR and X-ray structure of β3 GABAAR. We employed Monte Carlo energy minimizations to explore how the pore lumen may increase due to repulsions of flexible side chains from a variable-diameter electroneutral atom (an expanding sphere) pulled through the pore. The expanding sphere computations predicted that the pore diameter averaged along the permeation pathway is larger by approximately 3 Å than that computed for the models with fixed sidechains. Our models predict three major pore constrictions located at the levels of ?2′, 9′ and 20′ residues. Residues around the ?2′ and 9′ rings are known to form the desensitization and activation gates of GABAAR. Our computations predict that the 20′ ring may also serve as GABAAR gate whose physiological role is unclear. The side chain flexibility of residues ?2′, 9′ and 20′ and hence the dimensions of the constrictions depend on the GABAAR functional state. 相似文献