首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3145篇
  免费   121篇
  国内免费   36篇
化学   1788篇
晶体学   15篇
力学   59篇
数学   772篇
物理学   668篇
  2023年   21篇
  2022年   35篇
  2021年   64篇
  2020年   44篇
  2019年   60篇
  2018年   83篇
  2017年   52篇
  2016年   114篇
  2015年   113篇
  2014年   120篇
  2013年   193篇
  2012年   185篇
  2011年   238篇
  2010年   126篇
  2009年   146篇
  2008年   183篇
  2007年   172篇
  2006年   166篇
  2005年   149篇
  2004年   159篇
  2003年   110篇
  2002年   102篇
  2001年   47篇
  2000年   35篇
  1999年   31篇
  1998年   43篇
  1997年   38篇
  1996年   50篇
  1995年   33篇
  1994年   26篇
  1993年   23篇
  1992年   25篇
  1991年   26篇
  1990年   14篇
  1989年   9篇
  1988年   13篇
  1987年   11篇
  1986年   15篇
  1985年   17篇
  1984年   16篇
  1982年   15篇
  1981年   15篇
  1980年   11篇
  1979年   12篇
  1978年   9篇
  1977年   11篇
  1976年   9篇
  1975年   8篇
  1971年   8篇
  1970年   9篇
排序方式: 共有3302条查询结果,搜索用时 78 毫秒
151.
We report in situ high-resolution transmission electron microscopy observing the shrinkage of single-layer giant fullerenes (GF). At temperatures approximately 2000 degrees C, the GF volume reduces by greater than one 100-fold while the fullerene shell remains intact, evolving from a slightly polygonized to a nearly spherical shape with a smaller diameter. The number of carbon atoms in the GF decreases linearly with time until the small subbuckyball cage opens and rapidly disappears. Theoretical modeling indicates that carbon atoms are removed predominantly from the weakest binding energy sites, i.e., the pentagons, leading to the constant evaporation rate. The fullerene cage integrity is attributed to the collective behavior of interacting defects. These results constitute the first experimental evidence for the "shrink-wrapping" and "hot-giant" fullerene formation mechanisms.  相似文献   
152.
153.
An efficient approach for the synthesis of monosubstituted aromatic compounds relying on a ring-closing metathesis followed by spontaneous 1,2-elimination is presented. The efficiency for late-stage functionalization is highlighted in various solvents (up to 920 TON). This approach is compatible with strained cycles and other multiple bonds in the substrate.  相似文献   
154.
155.
This study addresses the lack of published information regarding uncertainty for high temperature heat flux differential scanning calorimeters. No data were found in the existing literature stating an uncertainty budget for temperatures above 1,000 °C. The presented results identify the main influencing factor for uncertainty with the instruments used—measurement repeatability—up to a temperature of 1,400 °C. Results show findings from analyzing a series of repeated baseline and sapphire measurements and the influence from different working equations. The uncertainty budget for temperature calibration of DSCs is crucial in cases where accuracy in temperature is significant. Data are also provided from repeated temperature calibrations on the melting point of pure metals from a supplied standard set that comes with the instrument. In addition, carbon eutectics have been used to address an issue resulting from the lack of available calibration materials for high temperatures up to 1,500 °C (above the melting point of gold).  相似文献   
156.
Bi‐ and trilayer graphene have attracted intensive interest due to their rich electronic and optical properties, which are dependent on interlayer rotations. However, the synthesis of high‐quality large‐size bi‐ and trilayer graphene single crystals still remains a challenge. Here, the synthesis of 100 μm pyramid‐like hexagonal bi‐ and trilayer graphene single‐crystal domains on Cu foils using chemical vapor deposition is reported. The as‐produced graphene domains show almost exclusively either 0° or 30° interlayer rotations. Raman spectroscopy, transmission electron microscopy, and Fourier‐transformed infrared spectroscopy were used to demonstrate that bilayer graphene domains with 0° interlayer stacking angles were Bernal stacked. Based on first‐principle calculations, it is proposed that rotations originate from the graphene nucleation at the Cu step, which explains the origin of the interlayer rotations and agrees well with the experimental observations.  相似文献   
157.
Thermodynamic instability of positive electrodes (cathodes) in Li-ion batteries in humid air and battery solutions results in capacity fading and batteries degradation, especially at elevated temperatures. In this work, we studied thermal interactions between cathode materials Li2MnO3, xLi2MnO3 .(1???x)Li(MnNiCo)O2,LiNi0.33Mn0.33Co0.33O2, LiNi0.4Mn0.4Co0.2O2, LiNi0.8Co0.15Al0.05O2 LiMn1.5Ni0.5O4, LiMn(or Fe)PO4, and battery solutions containing ethylene carbonate (EC) or propylene carbonate (PC), dimethyl carbonate (DMC) or ethylmethyl carbonate (EMC) and LiPF6 salt in the temperature range of 40–400 °C. It was found that these materials are stable chemically and well performing in LiPF6-based solutions up to 60 °C. The thermal decomposition of the electrolyte solutions starts >180 °C. The macro-structural transformations of cathode materials upon exothermic reactions were studied by transmission electron microscopy (TEM), X-ray difraction (XRD) and Raman spectroscopy. Differential scanning calorimetry (DSC) studies have shown that the exothermic reactions in the temperature range of 60–140 °C lead to partial decomposition of both the cathode material and electrolyte solution. The systems thus formed consisted of partially decomposed solutions and partially chemically delithiated cathode materials covered by reactions products. Thermal reactions terminate and this system reaches equilibrium at about 120 °C. It remains stable up to the beginning of the solution decomposition at about 180 °C. The increased content of surface Li2CO3 is found to significantly affect the thermal processes at high temperature range due to extensive exothermic decomposition at low temperatures.  相似文献   
158.
The ubiquitin–proteasome system (UPS) has been successfully targeted by both academia and the pharmaceutical industry for oncological and immunological applications. Typical proteasome inhibitors are based on a peptidic backbone endowed with an electrophilic C‐terminus by which they react with the active proteolytic sites. Although the peptide moiety has attracted much attention in terms of subunit selectivity, the target specificity and biological stability of the compounds are largely determined by the reactive warheads. In this study, we have carried out a systematic investigation of described electrophiles by a combination of in vitro, in vivo, and structural methods in order to disclose the implications of altered functionality and chemical reactivity. Thereby, we were able to introduce and characterize the class of α‐ketoamides as the most potent reversible inhibitors with possible applications for the therapy of solid tumors as well as autoimmune disorders.  相似文献   
159.
Herein, we provide some structural evidence of the complexation color‐change of murexide solutions in presence of lanthanide, which has been used for decades in complexometric studies. For Ln=Sm to Lu and Y, the compounds crystallize as monomeric [Ln(Murex)3] ? 11 H2O with an N3O6 tricapped square‐antiprism environment, which are stable up to 250 °C. Single‐ion magnet (SIM) behavior is then observed on the YbIII derivative in an original nine‐coordinated environment. In‐field slow relaxation (Δ=(15.6±1) K; τ0=2.73×10?6 s) is observed with a very narrow distribution of the relaxation time (αmax=0.09). Magnetic and photophysical properties can be correlated. On one hand the analysis of NIR emission spectrum permits to have access to crystal field parameters and to compare them with those extracted from dc measurements. On the other hand, magnetic measurements permit to identify the nature of the M J states involved in the 2F5/22F7/2 luminescence spectrum. The gap between the low‐lying states is in agreement with the energy barrier obtained from magnetic slow‐relaxation measurement.  相似文献   
160.
This research aimed to prepare cotton fibres with novel multifunctional water- and oil-repellent, antibacterial, and flame-retardant properties. A three-component equimolar sol mixture, which included 1H,1H,2H,2H-perfluorooctyltriethoxysilane, 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride, and P,P-diphenyl-N-(3-(trimethoxysilyl)propyl) phosphinic amide, was applied to the cotton fabric using the sol–gel process. The presence of the coating on the cotton fibres was confirmed by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy. The functional properties of the coated cotton fabric were determined from liquid contact angle measurements and antibacterial activity, burning behaviour, and thermo-oxidative stability studies. The results demonstrate that a unique, compatible, and uniform organic-inorganic hybrid polymer network was formed on the fabric surface, which preserved its simultaneous hydrophobic (water contact angle of 135 ± 2°), oleophobic (n-hexadecane contact angle of 117 ± 1°), and bactericidal (bacterial reduction of 100 %) properties and incorporated the enhanced thermo-oxidative stability of the modified cellulose fibres.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号