首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   646篇
  免费   17篇
  国内免费   4篇
化学   429篇
晶体学   5篇
力学   14篇
数学   77篇
物理学   142篇
  2024年   1篇
  2023年   5篇
  2022年   11篇
  2021年   7篇
  2020年   9篇
  2019年   9篇
  2018年   3篇
  2017年   13篇
  2016年   16篇
  2015年   15篇
  2014年   25篇
  2013年   43篇
  2012年   54篇
  2011年   55篇
  2010年   35篇
  2009年   30篇
  2008年   49篇
  2007年   28篇
  2006年   28篇
  2005年   43篇
  2004年   34篇
  2003年   31篇
  2002年   36篇
  2001年   16篇
  2000年   14篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1975年   2篇
  1972年   1篇
  1970年   1篇
排序方式: 共有667条查询结果,搜索用时 15 毫秒
81.
A series of aliphatic and aromatic polytrithiocarbonates was prepared using a novel “one-pot” synthesis procedure employing a phase-transfer catalyst. The starting reagents were either an aliphatic or an aromatic dihalide and an excessive amount of carbon disulfide. The effects of the phase-transfer catalyst and reaction conditions on yield were studied. The structure and composition of the polymers and reaction side-products were determined from infrared, ultraviolet, 1H-NMR spectra, and elemental analyses. The polymers were further characterized by viscosity measurement and thermal analysis. © 1993 John Wiley & Sons, Inc.  相似文献   
82.
Oral microbes have the capacity to spread throughout the gastrointestinal system and are strongly associated with multiple diseases. Given that tonsils are located between the oral cavity and the laryngopharynx at the gateway of the alimentary and respiratory tracts, tonsillar tissue may also be affected by microbiota from both the oral cavity (saliva) and the alimentary tract. Here, we analyzed the distribution and association of the microbial communities in the saliva and tonsils of Korean children subjected to tonsillectomy because of tonsil hyperplasia (n = 29). The microbiome profiles of saliva and tonsils were established via 16S rRNA gene sequencing. Based on the alpha diversity indices, the microbial communities of the two groups showed high similarities. According to Spearman’s ranking correlation analysis, the distribution of Treponema, the causative bacterium of periodontitis, in saliva and tonsils was found to have a significant positive correlation. Two representative microbes, Prevotella in saliva and Alloprevotella in tonsils, were negatively correlated, while Treponema 2 showed a strong positive correlation between saliva and tonsils. Taken together, strong similarities in the microbial communities of the tonsils and saliva are evident in terms of diversity and composition. The saliva microbiome is expected to significantly affect the tonsil microbiome. Furthermore, we suggest that our study creates an opportunity for tonsillar microbiome research to facilitate the development of novel microbiome-based therapeutic strategies.Subject terms: Comparative genomics, Metagenomics  相似文献   
83.
The applicability of spectrochemical analysis of minute amounts of powder samples was investigated using an ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A large variety of chemical powder samples of different composition were employed in the experiment. These included a mixture of copper(II) sulfate pentahydrate, zinc sulfide, and chromium(III) sulfate n-hydrate powders, baby powder, cosmetic powders, gold films, zinc supplement tablet, and muds and soils from different areas. The powder samples were prepared by pulverizing the original samples to an average size of around 30 μm in order to trap them in the tiny micro holes created on the surface of the quartz subtarget. It was demonstrated that in all cases studied, good quality spectra were obtained with low background, free from undesirable contamination by the subtarget elements and featuring ppm sensitivity. A further measurement revealed a linear calibration curve with zero intercept. These results clearly show the potential application of this technique for practical qualitative and quantitative spectrochemical analysis of powder samples in various fields of study and investigation.  相似文献   
84.
Colloidal FePt nanocrystals, 6 nm in diameter, were synthesized and then coated with silica (SiO2) shells. The silica shell thickness could be varied from 10 to 25 nm. As-made FePt@SiO2 nanocrystals have low magnetocrystalline anisotropy due to a compositionally disordered FePt core. When films of FePt@SiO2 particles are annealed under hydrogen at 650 degrees C or above, the FePt core transforms to the compositionally ordered L1(0) phase, and superparamagnetic blocking temperatures exceeding room temperature are obtained. The SiO2 shell prevents FePt coalescence at annealing temperatures up to approximately 850 degrees C. Annealing under air or nitrogen does not induce the FePt phase transition. The silica shell limits magnetic dipole coupling between the FePt nanocrystals; however, low temperature (5 K) and room temperature magnetization scans show slightly constricted hysteresis loops with coercivities that decrease systematically with decreased shell thickness, possibly resulting from differences in magnetic dipole coupling between particles.  相似文献   
85.
Three new uni-dimensional alkali metal titanium fluoride materials, A2TiF5·nH2O (A=K, Rb, or Cs; n=0 or 1) have been synthesized by hydrothermal reactions. The structures of A2TiF5·nH2O have been determined by single-crystal X-ray diffraction. The Ti4+ cations have been reduced to Ti3+ during the synthesis reactions. All three A2TiF5·nH2O materials contain novel 1-D chain structures that are composed of the slightly distorted Ti3+F6 corner-sharing octahedra attributable to the Jahn-Teller distortion. The coordination environment of the alkali metal cations plays an important role to determine the degree of turning in the chain structures. Complete structural analyses, Infrared and UV-vis diffuse reflectance spectra, and thermal analyses are presented, as are electronic structure calculations.  相似文献   
86.
Isotope-labeled N-acetyl dipeptides (Ac-Xxx-Ala) are coupled to the primary amines of tryptic peptides and then analyzed by tandem mass spectrometry. Amide bond cleavage between Xxx and Ala provides both low- and high-mass isotope-coded signals for quantification of peptides. Especially, facile cleavage at the modified lysine side chain yields very strong high-mass quantitation signals in a noise-free region. Tagging tryptic peptides with isobaric N-acetyl dipeptides is a viable strategy for accurate quantification of proteins, which can be used with most quadrupole ion trap mass spectrometers carrying the 1/3 mass cut-off problem.  相似文献   
87.
We demonstrate a method for constructing bifunctional nanostructures, which conjugate biochemical and electrocatalytic activities, on glassy carbon surfaces by decorating the carbon surfaces with both biologically active glucose oxidases and size-monodisperse Pt nanoparticles (less than 2 nm in diameter) utilizing only a single dendrimer layer.  相似文献   
88.
A general and facile synthesis of enantiopure 1-deoxyazasugars was achieved from stereoselective dihydroxylation of a common synthetic intermediate, piperidine ring fused oxazolidin-2-one, originating from a commercially available starting substrate, chiral aziridine-2-carboxylate, in high yields.  相似文献   
89.
Koo C  Godley RF  Park J  McDougall MP  Wright SM  Han A 《Lab on a chip》2011,11(13):2197-2203
We present the development of a microfluidically cryo-cooled planar coil for magnetic resonance (MR) microscopy. Cryogenically cooling radiofrequency (RF) coils for magnetic resonance imaging (MRI) can improve the signal to noise ratio (SNR) of the experiment. Conventional cryostats typically use a vacuum gap to keep samples to be imaged, especially biological samples, at or near room temperature during cryo-cooling. This limits how close a cryo-cooled coil can be placed to the sample. At the same time, a small coil-to-sample distance significantly improves the MR imaging capability due to the limited imaging depth of planar MR microcoils. These two conflicting requirements pose challenges to the use of cryo-cooling in MR microcoils. The use of a microfluidic based cryostat for localized cryo-cooling of MR microcoils is a step towards eliminating these constraints. The system presented here consists of planar receive-only coils with integrated cryo-cooling microfluidic channels underneath, and an imaging surface on top of the planar coils separated by a thin nitrogen gas gap. Polymer microfluidic channel structures fabricated through soft lithography processes were used to flow liquid nitrogen under the coils in order to cryo-cool the planar coils to liquid nitrogen temperature (-196 °C). Two unique features of the cryo-cooling system minimize the distance between the coil and the sample: (1) the small dimension of the polymer microfluidic channel enables localized cooling of the planar coils, while minimizing thermal effects on the nearby imaging surface. (2) The imaging surface is separated from the cryo-cooled planar coil by a thin gap through which nitrogen gas flows to thermally insulate the imaging surface, keeping it above 0 °C and preventing potential damage to biological samples. The localized cooling effect was validated by simulations, bench testing, and MR imaging experiments. Using this cryo-cooled planar coil system inside a 4.7 Tesla MR system resulted in an average image SNR enhancement of 1.47 ± 0.11 times relative to similar room-temperature coils.  相似文献   
90.
Inkjet‐printed high speed polymeric complementary circuits are fabricated using an n‐type ([poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐dithiophene)} [P(NDI2OD‐T2), Polyera ActivInk N2200] and two p‐type polymers [poly(3‐hexylthiophene) (P3HT) and a dithiophene‐based polymer (Polyera ActivInk P2100)]. The top‐gate/bottom‐contact (TG/BC) organic field‐effect transistors (OFETs) exhibit well‐balanced and very‐high hole and electron mobilities (μFET) of 0.2–0.5 cm2/Vs, which were enabled by optimization of the inkjet‐printed active features, small contact resistance both of electron and hole injections, and effective control over gate dielectrics and its orthogonal solvent effect (selection of poly(methyl methacrylate) and 2‐ethoxyethanol). Our first demonstrated inkjet‐printed polymeric complementary devices have been integrated to high‐performance complementary inverters (gain >30) and ring oscillators (oscillation frequency ~50 kHz). We believe that the operating frequency of printable organic circuits can be further improved more than 10 MHz by fine‐tuning of the device architecture and optimization of the p‐ and n‐channel semiconductor processing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号