首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   3篇
化学   109篇
晶体学   1篇
力学   1篇
数学   2篇
物理学   9篇
  2022年   4篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   9篇
  2013年   14篇
  2012年   9篇
  2011年   20篇
  2010年   11篇
  2009年   12篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
排序方式: 共有122条查询结果,搜索用时 296 毫秒
41.
First isoxazolyl-substituted nitronyl nitroxides (L and $L^{Me_2 }$ ) were synthesized and characterized. Their reactions with Cu(hfac)2 and Mn(hfac)2 (hfac is hexafluoroacetylacetonate) afford the heterospin complexes [Cu(hfac)2L] n , [Cu2(hfac)4L] n , $\left[ {Cu_2 (hfac)_4 L^{Me_2 } } \right]_n$ , $\left[ {Cu(hfac)_2 L^{Me_2 } } \right]_n$ , $\left[ {Cu(hfac)_2 L^{Me_2 } _2 } \right]$ , $\left[ {Cu(hfac)_2 L^{Me_2 } (MeCN)} \right]$ , [Mn(hfac)2]3L4, and $\left[ {Me(hfac)_2 L^{Me_2 } } \right]_2$ . In the ligand L, the N atom of the isoxazole ring (NIz) has weak electron-donating properties. For example, the paramagnetic ligand in the chain polymer complex [Cu(hfac)2L] n acts as a bidentate bridging ligand coordinated through both O atoms of the nitronyl nitroxide group (ON-O); the NIz and OIz atoms are not involved in the coordination. The introduction of Me groups into the isoxazole substituent results in an increase in the electron density on the NIz atom and enables the synthesis of the chain polymer complex $\left[ {Cu(hfac)_2 L^{Me_2 } } \right]_n$ , in which the bidentate bridging ligand $L^{Me_2 }$ is coordinated through the ON-O and NIz atoms. In the mononuclear complexes $\left[ {Cu(hfac)_2 L^{Me_2 } _2 } \right]$ and $\left[ {Cu(hfac)_2 L^{Me_2 } (MeCN)} \right]$ , the paramagnetic ligand is coordinated only through the NIz atom. The solid heterospin Mn complexes [Mn(hfac)2]3L4 and $\left[ {Mn(hfac)_2 L^{Me_2 } } \right]_2$ have a molecular structure. In these complexes, strong antiferromagnetic intracluster exchange interactions arise. The residual magnetic moments of the exchange clusters in the complex [Mn(hfac)2]3L4 are ferromagnetically coupled, resulting in the increase in the effective magnetic moment (??eff) of the complex with decreasing temperature in the range of 300??30 K. The thermomagnetic study of the complexes [Cu(hfac)2L] n , [Cu2(hfac)4L] n , and $\left[ {Cu_2 (hfac)_4 L^{Me_2 } } \right]_n$ in the range of 2?C300 K revealed the ferromagnetic ordering at temperatures below 5 K. The ESR study of the solid complex $\left[ {Cu(hfac)_2 L^{Me_2 } } \right]_n$ showed that the decrease in its ??eff in the temperature range of 30?C300 K is associated with the direct exchange interaction between the unpaired electrons of the nitronyl nitroxides of adjacent chains, whereas at temperatures below 30 K, only Cu2+ ions contribute to the magnetic susceptibility of the complex.  相似文献   
42.
Zinc and cadmium bis-o-semuquinolate and catecholate complexes are synthesized by the reduction of 3,6-di-tert-butyl-o-benzoquinone (3,6-Q) with amalgamated metals in a medium of various solvents. The oxidation of the metal catecholate derivatives results in the corresponding mono-o-semiquinone complexes, which undergo symmetrization to form the metal bis-o-semiquinolates. The molecular structures of the complexes (3,6-SQ)2Zn · Py, (3,6-SQ)2Zn · H2O, and (3,6-SQ)2Cd · α,α′-Bipy (3,6-SQ is the radical anion of 3,6-Q) are studied by X-ray diffraction analysis. Magnetochemical studies are carried out for the zinc and cadmium bis-o-semiquinone complexes.  相似文献   
43.
All the steps of the proposed technique, from the synthesis of single-source precursors to the preparation of CoPd and CoPt nanoalloys, are described. The double complex salts (DCS) [M(NH3)4][Co(C2O4)2(H2O)2]·2H2O (M = Pd, Pt), which were synthesized by mixing solutions containing [M(NH3)4]2+ cations and [Co(C2O4)2(H2O)2]2− anions, have been used as precursors. The salts obtained were characterized by IR spectroscopy, thermal analysis, XRD and single crystal X-ray diffraction. The prepared compounds crystallize in the monoclinic (space group I2/m, M = Pd) and orthorhombic (space group I222, M = Pt) crystal systems. Thermal decomposition of the salts in helium or hydrogen atmosphere at 200-600 °C results in the formation of nanoalloys powders (random solid solution Co0.50Pd0.50 and chemically ordered CoPt). The size of the bimetallic particles varied from 5 to 20 nm. Order-disorder structural transformations in Co0.50Pt0.50 nanoalloys were studied. The magnetic properties of both chemically disordered Co0.50Pd0.50 and ordered CoPt clusters have also been measured.  相似文献   
44.
The interaction of 3,6-di-tert-butyl-o-benzoquinone (3,6-Q) with indium in toluene leads to the tris-o-semiquinolate derivative (3,6-SQ)(3)In (3,6-SQ - radical-anion of 3,6-Q). According to single-crystal X-ray diffraction analysis, this complex has a trigonal prismatic structure. Magnetic measurements revealed that the exchange interactions between odd electrons of the paramagnetic ligands in (3,6-SQ)(3)In are antiferromagnetic in character. The treatment of (3,6-SQ)(3)In with 2,2'-dipyridyl (Dipy) causes the displacement of one o-quinone ligand and the formation of the (3,6-SQ)In(Dipy)(3,6-Cat) (3,6-Cat - dianion of 3,6-Q) derivative containing mixed charged o-quinoid ligands. The reaction of InI with (3,6-SQ)K in THF solution is accompanied by a redox process and the potassium-indium(iii) catecholate derivative was obtained as a result. The oxidation of InI with 3,6-Q in THF produces the dimeric In(iii) iodo-catecholate complex [(3,6-Cat)(2)In·2THF]InI(2). The same derivative can be synthesized by the interaction of indium metal with a mixture of I(2) and 3,6-Q.  相似文献   
45.
The new 1D coordination polymer {Tm(Piv)3}n (1), where Piv=OOCBut?, was synthesized in high yield (>95%) by the reaction of thulium acetate with pivalic acid in air at 100 °С. According to the X-ray diffraction data, the metal atoms in compound 1 are in an octahedral ligand environment unusual for lanthanides. The magnetic and luminescence properties of polymer 1, it’s the solid-phase thermal decomposition in air and under argon, and the thermal behavior in the temperature range of ?50…+50 °С were investigated. The vaporization process of complex 1 was studied by the Knudsen effusion method combined with mass-spectrometric analysis of the gas-phase composition in the temperature range of 570–680 K.  相似文献   
46.
The complex formation between redox active 2,4,6,8-tetrakis(tert-butyl)phenoxazin-1-one (L) and four-coordinate Co(II) complexes, resulting in six-coordinate adducts (I) (C77H82N12O5Co) and (II) (C38H41NO6F12Co) was studied. High-spin structure of the formed cobalt adducts I and II (hs-CoII–BQ) was established by X-ray diffraction analysis and magnetochemistry methods. Adducts I and II are stable over a wide temperature range (5–300 K) and are not involved in the redox process giving low-spin adducts (ls-CoIII–SQ) studied previously.  相似文献   
47.
A dodecanuclear complex [Ni12Piv10(hfac)6(OH)8(EtOH)6]·C6H14 was isolated from various synthetic systems simultaneously containing NiII and the pivalate and hexafluoro-acetylacetonate anions. The structure of this complex was determined and the magnetic properties were investigated. The use of EtOH as the solvent or the presence of EtOH in the reagents is the decisive factor for the formation of this complex.  相似文献   
48.
Complexes [CuL1Cl2] (I), [CuL2Cl2] · EtOH (II), and Cu2L3Cl4 (III) containing esters of the N-derivatives of optically active amino acids based on (+)-3-carene (L1, L2) and (?)-α-pinene (L3) are synthesized. The crystal and molecular structures of compounds I and II are determined by X-ray diffraction analyses (CIF files CCDC nos. 1560071 (I), 1560072 (II)). The crystal structure of compound I consists of mononuclear complex molecules. In the structure of compound II, the unit cell contains two crystallographically independent molecules of mononuclear complex [CuL2Cl2] and two EtOH molecules. Ligands L1 and L2 perform the tridentate-chelating function by the N atoms of the NH and NOH groups and by the O atom of the C=O group. In compounds I and II, the coordination polyhedra Cl2N2O of the Cu atoms are trigonal bipyramid. According to the data of IR and electronic spectroscopy, binuclear complex III has similar coordination polyhedra. The experimental values of μeff for compounds I, II, and III at 300 K are 1.93, 1.88, and 2.71 μB. For complex III, the μeff(T) dependence in a range of 2–300 K indicates a weak ferromagnetic exchange interaction.  相似文献   
49.
Single crystals of Tl2[NbCl6] (1) and Tl2 [NbBr6] (2) are obtained as black needles on heating TlCl, Nb, S2Cl2 (1) and Tl, Nb, and Br2 at 400°C (2). Tl2NbBr6 also forms in the reaction of TlBr, Nb, Br2, and S at 500°C. Both compounds crystallize in the K2[PtCl6] structure type to form non-distorted octahedral [NbХ6]2– anions (Nb–Cl 2.397(4) Å and Nb–Br 2.516(2) Å). The magnetic properties of Tl2[NbBr6] in a range 5-300 K indicate an antiferromagnetic interaction between Nb4+ ion spins (d1, S = 1/2). On cooling, the compound becomes a noncollinear ferromagnet with Tc = 23 K.  相似文献   
50.
The structure of the [Mn6(O)2(Piv)10L2] compound, where Piv is the pivalate anion and L is isonicotinamide, is investigated. Its solid phase is found to be formed by polymeric layers within which hexanuclear fragments {Mn6(O)2(Piv)10} are bound by bidentate bridging L. The molecules of the solvent (Me2CO or EtOAc) in which the synthesis was performed are incorporated into the inter-layer space of the crystal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号