首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27193篇
  免费   853篇
  国内免费   157篇
化学   18211篇
晶体学   255篇
力学   926篇
综合类   1篇
数学   2346篇
物理学   6464篇
  2023年   154篇
  2022年   410篇
  2021年   489篇
  2020年   432篇
  2019年   448篇
  2018年   333篇
  2017年   317篇
  2016年   727篇
  2015年   631篇
  2014年   793篇
  2013年   1491篇
  2012年   1950篇
  2011年   2135篇
  2010年   1295篇
  2009年   1143篇
  2008年   1741篇
  2007年   1642篇
  2006年   1532篇
  2005年   1428篇
  2004年   1262篇
  2003年   982篇
  2002年   967篇
  2001年   672篇
  2000年   575篇
  1999年   338篇
  1998年   252篇
  1997年   293篇
  1996年   334篇
  1995年   257篇
  1994年   274篇
  1993年   276篇
  1992年   264篇
  1991年   204篇
  1990年   154篇
  1989年   139篇
  1988年   140篇
  1987年   118篇
  1986年   95篇
  1985年   168篇
  1984年   112篇
  1983年   97篇
  1982年   122篇
  1981年   88篇
  1980年   79篇
  1978年   80篇
  1977年   85篇
  1976年   94篇
  1975年   101篇
  1974年   79篇
  1973年   102篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N-substituted glycine) „peptoids“ are of great interest as they resist proteolysis and can inhibit a wide spectrum of microbes. We investigate how terminal modification of a peptoid AMP-mimic and its surface immobilization affect antimicrobial activity. We also demonstrate a convenient surface modification strategy for enabling alkyne–azide „click“ coupling on amino-functionalized surfaces. Our results verified that the N- and C-terminal peptoid structures are not required for antimicrobial activity. Moreover, our peptoid immobilization density and choice of PEG tether resulted in a „volumetric“ spatial separation between AMPs that, compared to past studies, enabled the highest AMP surface activity relative to bacterial attachment. Our analysis suggests the importance of spatial flexibility for membrane activity and that AMP separation may be a controlling parameter for optimizing surface anti-biofouling.  相似文献   
992.
To improve the performance of membrane electrode assemblies used in proton exchange membrane fuel cells, a better understanding is necessitated regarding the nano/microstructure of the catalyst layer and the physicochemical phenomena responsible for the oxygen reduction reaction (ORR) occurring on this layer. In particular, it is very important to understand catalyst/ionomer interfaces in the cathode catalyst layer to apply the advanced ORR catalysts to the cathode catalyst layer in membrane electrode assemblies, which have solid-phase electrolytes; these catalysts are primarily developed under liquid electrolyte conditions. A closer observation of the catalyst/ionomer interfacial structure shows that all the transport processes required for ORR are controlled by the ionomer thin film covering the catalyst. Therefore, this review addresses this issue and introduces recent studies on catalyst/ionomer interfaces. We discuss the current understanding of the structure of the catalyst/ionomer interface, which depends on the surface characteristics of the catalyst and the ionomer, as well as transport of water, ions, and gas; these factors are in turn dependent on the structure of the interface. In addition, we introduce research efforts for improving the properties of catalyst inks, which form the basis for controlling the catalyst/ionomer interfacial structure. Based on the findings of these studies, we propose further opportunities and challenges in the study of catalyst/ionomer interfaces.  相似文献   
993.
Surface reactivity and ion transfer processes of anatase TiO2 nanocrystals were studied using lithium bis(trifluoromethylsulfone)imide (LiTFSI) as a probing molecule. Analysis of synthesized anatase TiO2 by electron microscopy reveals aggregated nanoparticles (average size ~8 nm) with significant defects (holes and cracks). With the introduction of LiTFSI salt, the Li+-adsorption propensity towards the surface along the anatase (100) step edge plane is evident in both x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analysis. Ab initio molecular dynamics (AIMD) analysis corroborates the site-preferential interaction of Li+ cations with oxygen vacancies and the thermodynamically favorable transport through the (100) step edge plane. Using 7Li nuclear magnetic resonance (NMR) chemical shift and relaxometry measurements, the presence of Li+ cations near the interface between TiO2 and the bulk LiTFSI phase was identified, and subsequent diffusion properties were analyzed. The lower activation energy derived from NMR analysis reveals enhanced mobility of Li+ cations along the surface, in good agreement with AIMD calculations. On the other hand, the TFSI anion interaction with defect sites leads to CF3 bond dissociation and subsequent generation of carbonyl fluoride-type species. The multimodal spectroscopic analysis including NMR, electron paramagnetic resonance (EPR), and x-ray photoelectron spectroscopy (XPS) confirms the decomposition of TFSI anions near the anatase surface. The reaction mechanism and electronic structure of interfacial constituents were simulated using AIMD calculations. Overall, this work demonstrates the role of defects at the anatase nanoparticle surface on charge transfer and interfacial reaction processes.  相似文献   
994.
995.
It is thought that the therapeutic efficacy of Morus alba L. is determined by its biological compounds. We investigated the chemical differences in the medicinal parts of M. alba by analyzing a total of 57 samples (15 root barks, 11 twigs, 12 fruits, and 19 leaves). Twelve marker compounds, including seven flavonoids, two stilbenoids, two phenolic acids, and a coumarin, were quantitatively analyzed using a high-performance liquid chromatography-diode array detector and chemometric analyses (principal component and heatmap analysis). The results demonstrated that the levels and compositions of the marker compounds varied in each medicinal part. The leaves contained higher levels of six compounds, the root barks contained higher levels of four compounds, and the twigs contained higher levels of two compounds. The results of chemometric analysis showed clustering of the samples according to the medicinal part, with the marker compounds strongly associated with each part: mulberroside A, taxifolin, kuwanon G, and morusin for the root barks; 4-hydroxycinnamic acid and oxyresveratrol for the twigs and skimmin; chlorogenic acid, rutin, isoquercitrin, astragalin, and quercitrin for the leaves. Our approach plays a fundamental role in the quality evaluation and further understanding of biological actions of herbal medicines derived from various medicinal plant parts.  相似文献   
996.
Inulae Flos, the flower of Inula britannica L., is used as a dietary supplement, beverage, and medicine in East Asia. In this study, we evaluated the gastroprotective effects of Inulae Flos extract (IFE) against gastric mucosal lesions induced by hydrochloric acid (HCl)/ethanol in rats and explored its potential mechanisms by measuring antioxidant enzyme activity, mucus secretion, and prostaglandin E2 (PGE2) levels. Pretreatment with IFE at doses of 100 and 300 mg/kg significantly inhibited gastric lesions in HCl/ethanol-treated rats. IFE increased the activities of superoxide dismutase and catalase and the levels of glutathione and PGE2 in gastric tissues. The administration of IFE also significantly increased the gastric wall mucus contents in HCl/ethanol-induced gastric lesions. These findings suggest that IFE has gastroprotective effects against HCl/ethanol-induced gastric lesions and exerts these effects through increased antioxidant levels and gastric mucus secretion. Inulae Flos may be a promising agent for the prevention and treatment of gastritis and gastric ulcers.  相似文献   
997.
Pathway complexity has become an important topic in recent years due to its relevance in the optimization of molecular assembly processes, which typically require precise sample preparation protocols. Alternatively, competing aggregation pathways can be controlled by molecular design, which primarily rely on geometrical changes of the building blocks. However, understanding how to control pathway complexity by molecular design remains elusive and new approaches are needed. Herein, we exploit positional isomerism as a new molecular design strategy for pathway control in aqueous self‐assembly. We compare the self‐assembly of two carboxyl‐functionalized amphiphilic BODIPY dyes that solely differ in the relative position of functional groups. Placement of the carboxyl group at the 2‐position enables efficient pairwise H‐bonding interactions into a single thermodynamic species, whereas meso‐substitution induces pathway complexity due to competing hydrophobic and hydrogen bonding interactions. Our results show the importance of positional engineering for pathway control in aqueous self‐assembly.  相似文献   
998.
Rational engineering and assimilation of diverse chemo‐ and biocatalytic functionalities in a single nanostructure is highly desired for efficient multistep chemical reactions but has so far remained elusive. Here, we design and synthesize multimodal catalytic nanoreactors (MCNRs) based on a mesoporous metal‐organic framework (MOF). The MCNRs consist of customizable metal nanocrystals and stably anchored enzymes in the mesopores, as well as coordinatively unsaturated cationic metal MOF nodes, all within a single nanoreactor space. The highly intimate and diverse catalytic mesoporous microenvironments and facile accessibility to the active site in the MCNR enables the cooperative and synergistic participation from different chemo‐ and biocatalytic components. This was shown by one‐pot multistep cascade reactions involving a heterogeneous catalytic nitroaldol reaction followed by a [Pd/lipase]‐catalyzed chemoenzymatic dynamic kinetic resolution to yield optically pure (>99 % ee) nitroalcohol derivatives in quantitative yields.  相似文献   
999.
We report a RhIII‐catalyzed regio‐ and diastereoselective synthesis of δ‐lactams from readily available acrylamide derivatives and unactivated alkenes. The reaction provides a rapid route to a diverse set of δ‐lactams in good yield and stereoselectivity, which serve as useful building blocks for substituted piperidines. The regioselectivity of the reaction with unactivated terminal alkene is significantly improved by using Cpt ligand on the RhIII catalyst. The synthetic utility of the reaction is demonstrated by the preparation of a potential drug candidate containing a trisubstituted piperidine moiety. Mechanistic studies show that the reversibility of the C?H activation depends on the choice of Cp ligand on the RhIII catalyst. The irreversible C?H activation is observed and becomes turnover‐limiting with [CptRhCl2]2 as catalyst.  相似文献   
1000.
Photodynamic therapy (PDT) has long been shown to be a powerful therapeutic modality for cancer. However, PDT is undiversified and has become stereotyped in recent years. Exploration of distinctive PDT methods is thus highly in demand but remains a severe challenge. Herein, an unprecedented 1+1+1>3 synergistic strategy is proposed and validated for the first time. Three homologous luminogens with aggregation‐induced emission (AIE) characteristics were rationally designed based on a simple backbone. Through slight structural tuning, these far‐red/near‐infrared AIE luminogens are capable of specifically anchoring to mitochondria, cell membrane, and lysosome, and effectively generating reactive oxygen species (ROS). Notably, biological studies demonstrated combined usage of three AIE photosensitizers gives multiple ROS sources simultaneously derived from several organelles, which gives superior therapeutic effect than that from a single organelle at the same photosensitizers concentration. This strategy is conceptually and operationally simple, providing an innovative approach and renewed awareness of improving therapeutic effect through three‐pronged PDT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号