首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   6篇
  国内免费   1篇
化学   175篇
晶体学   1篇
力学   2篇
数学   26篇
物理学   141篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   5篇
  2016年   3篇
  2014年   10篇
  2013年   14篇
  2012年   10篇
  2011年   16篇
  2010年   10篇
  2009年   7篇
  2008年   9篇
  2007年   14篇
  2006年   16篇
  2005年   13篇
  2004年   10篇
  2003年   10篇
  2002年   6篇
  2001年   5篇
  2000年   10篇
  1999年   6篇
  1998年   3篇
  1997年   6篇
  1996年   6篇
  1993年   6篇
  1992年   8篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1985年   5篇
  1983年   3篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   14篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1971年   5篇
  1968年   5篇
  1967年   4篇
  1966年   3篇
  1956年   2篇
  1955年   2篇
  1932年   2篇
  1928年   2篇
  1925年   2篇
排序方式: 共有345条查询结果,搜索用时 15 毫秒
51.
52.
The Severi variety parameterizes plane curves of degree dd with δδ nodes. Its degree is called the Severi degree. For large enough dd, the Severi degrees coincide with the Gromov–Witten invariants of CP2CP2. Fomin and Mikhalkin (2010) [10] proved the 1995 conjecture that for fixed δδ, Severi degrees are eventually polynomial in dd.  相似文献   
53.
A new long-lived isomeric state in (65)Fe has been discovered with Penning trap mass spectrometry and high-precision mass measurements of the neutron-rich isotopes (63-65)Fe and (64-66)Co have been performed with the Low-Energy Beam and Ion Trap Facility at the NSCL. For the new isomer in (65)Fe an excitation energy of 402(5) keV has been determined from the measured mass difference between the isomeric and ground states. The mass uncertainties of all isotopes have been reduced by a factor of 10-100 compared to previous results. In the case of (64)Co the previous mass value was found to deviate by about 5 standard deviations from the new measurement.  相似文献   
54.
55.
Consumption of selenium enriched plants or yeast-based nutritional supplements has been reported to provide anticarcinogenic benefits which are selenium compound dependent. Separation and identification of these selenium compounds is critical to understand the activity. Plants and yeast convert inorganic selenium in the soil or growth media into organoselenium compounds, probably following a route similar to the sulfur assimilatory pathway. Non-volatile selenium compounds produced include selenoamino acids, some of which have shown anticarcinogenic activity. Volatile compounds produced by chemical reaction of involatile precursors have also been found. An ion pair chromatographic method with ICP-MS detection for the separation of selenoamino acid standards potentially present in real samples is given. The method allows separation of selenoamino acids including such analytes as the cis-trans isomers of Se-1-propenyl-dl-selenocysteine. The method also provides the capability of determining the presence of selenoxides and possibly selenones, and tracking of other functionalities and reactions by selective derivatization. Alternatively, selenoamino acids are treated with ethylchloroformate to produce stable volatile derivatives which are amenable to GC separation with element specific atomic emission detection (GC-AED). Results of total selenium determination and speciation of selenium enriched yeast-based nutritional supplements, selenium enriched allium vegetables and bioremediation samples are presented.  相似文献   
56.
Conventional "wet" chemical analyses rely heavily on the use of harsh chemicals and derivatization, thereby altering native seed structures leaving them unable to detect any original inherent structures within an intact tissue sample. A synchrotron is a giant particle accelerator that turns electrons into light (million times brighter than sunlight) which can be used to study the structure of materials at the molecular level. Synchrotron radiation-based Fourier transform IR microspectroscopy (SR-FTIRM) has been developed as a rapid, direct, non-destructive and bioanalytical technique. This technique, taking advantage of the brightness of synchrotron light and a small effective source size, is capable of exploring the molecular chemistry within the microstructures of a biological tissue without the destruction of inherent structures at ultraspatial resolutions within cellular dimensions. This is in contrast to traditional 'wet' chemical methods, which, during processing for analysis, often result in the destruction of the intrinsic structures of feeds. To date there has been very little application of this technique to the study of plant seed tissue in relation to nutrient utilization. The objective of this study was to use novel synchrotron radiation-based technology (SR-FTIRM) to identify the differences in the molecular chemistry and conformation of carbohydrate and protein in various plant seed endosperms within intact tissues at cellular and subcellular level from grains with different biodegradation kinetics. Barley grain (cv. Harrington) with a high rate (31.3%/h) and extent (78%), corn grain (cv. Pioneer) with a low rate (9.6%/h) and extent of (57%), and wheat grain (cv. AC Barrie) with an intermediate rate (23%/h) and extent (72%) of ruminal DM degradation were selected for evaluation. SR-FTIRM evaluations were performed at the National Synchrotron Light Source at the Brookhaven National Laboratory (Brookhaven, NY). The molecular structure spectral analysis involved the fingerprint regions of ca. 1720-1485 cm(-1) (attributed to protein amide I C=O and C-N stretching; amide II N-H bending and C-N stretching), ca. 1650-950 cm(-1) (non-structural CHO starch in endosperms), and ca. 1185-800 cm(-1) (attributed to total CHO C-O stretching vibrations) together with agglomerative hierarchical cluster and principal component analyses. Analyses involving the protein amide I features consistently identified differences between all three grains. Other analyses involving carbohydrate features were able to differentiate between wheat and barley but failed however to differentiate between wheat and corn. These results suggest that SR-FTIRM plus the multivariate analyses can be used to identify spectral features associated with the molecular structure of endosperm from grains with different biodegradation kinetics, especially in relation to protein structure. The Novel synchrotron radiation-based bioanalytical technique provides a new approach for plant seed structural molecular studies at ultraspatial resolution and within intact tissue in relation to nutrient availability.  相似文献   
57.
58.
Photo-DSC was used to investigate the cure kinetics of a photo-initiated resin. The exothermal photo-polymerization reactions were performed in isothermal mode. The irradiation of photo-initiated resin was studied under different conditions of temperature, UV lamp intensity, and reaction atmosphere (nitrogen and air). The results obtained by photo-DSC allowed us to determine kinetic data of the photo-polymerized reactions: the global activation energy and reaction enthalpy, and the conversion as a function of time and temperature. Modulated temperature DSC measurements were carried out to verify whether vitrification occurs during polymerization. The conversion at the top and bottom of irradiated samples was obtained by FT-IR spectroscopy before and after photo-polymerization. A non-homogenous photo-polymerization into the material was observed, probably because of the light absorptions effects within the uppermost layers.  相似文献   
59.
The ionization energies of conformationally constrained, newly synthesized beta-disilanyl sulfides and selenides were determined by photoelectron spectroscopy. These ionization energies reflect substantial (0.53-0.75 eV) orbital destabilizations. The basis for these destabilizations was investigated by theoretical calculations, which reveal geometry-dependent interaction between sulfur or selenium lone pair orbitals and sigma-orbitals, especially Si-Si sigma-orbitals. These results presage facile redox chemistry for these compounds and significantly extend the concept of sigma-stabilization of electron-deficient centers.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号