首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
化学   21篇
力学   1篇
物理学   77篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   7篇
  2011年   13篇
  2010年   5篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   7篇
  2004年   1篇
  2002年   5篇
  2001年   7篇
  2000年   3篇
  1996年   10篇
  1995年   11篇
  1994年   3篇
  1990年   2篇
  1988年   1篇
  1984年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1974年   2篇
排序方式: 共有99条查询结果,搜索用时 281 毫秒
11.
12.
Caseinolytic proteins (Clp), which are present in both prokaryotes and eukaryotes, play a major role in cell protein quality control and survival of bacteria in harsh environmental conditions. Recently, a member of this protein family, ClpK was identified in a pathogenic strain of Klebsiella pneumoniae which was responsible for nosocomial infections. ClpK is linked to the thermal stress survival of this pathogen. The genome wide analysis of Clp proteins in Klebsiella spp. indicates that ClpK is present in only 34% of the investigated strains. This suggests that the uptake of the clpk gene is selective and may only be taken up by a pathogen that needs to survive harsh environmental conditions. In silico analyses and molecular dynamic simulations show that ClpK is mainly α-helical and is highly dynamic. ClpK was successfully expressed and purified to homogeneity using affinity and anion exchange chromatography. Biophysical characterization of ClpK showed that it is predominantly alpha-helical, and this is in agreement with in silico analysis of the protein structure. Furthermore, the purified protein is biologically active and hydrolyses ATP in a concentration- dependent manner.  相似文献   
13.
We have performed a search for scalar top quark (stop) pair production in the inclusive electron-muon-missing transverse energy final state, using a sample of pp events corresponding to 108.3 pb(-1) of data collected with the D0 detector at Fermilab. The search is done in the framework of the minimal supersymmetric standard model assuming that the sneutrino is the lightest supersymmetric particle. For the dominant decays of the lightest stop, t-->b chi+1 and t-->blnu, no evidence for signal is found. We derive cross-section limits as a function of stop ( t ), chargino ( chi+1), and sneutrino ( nu) masses.  相似文献   
14.
Two distinct acoustic shear modes are observed to propagate in otherwise isotropic rare earth-iron compounds when a magnetic field is applied. The field dependence of the velocities of the two modes are reported and the results interpreted using linear magnetoelastic theory.  相似文献   
15.
A structure determination of the one-dimensionally conducting salt tetrathiofulvalinium-tetracyanoquinodimethanide (TTF-TCNQ) at 100°K, and additional measurements at lower temperatures, show that no major change in crystal structure occurs between room temperature and 40°K. At 100°K the interplanar spacings are reduced from 3.47 to 3.43 and from 3.17 to 3.11 Å for the TTF and TCNQ stacks, respectively. The bond lengths at 100°K agree better with the values listed for salts of TCNQ-0.5, than with those for TCNQ-1. On cooling a broadening of the b1 axis reflections is observed, which would be compatible with one-dimensional distortions of the crystal lattice.  相似文献   
16.
We present measurements of the Lambda(0)(b) lifetime in the exclusive decay channel Lambda(0)(b)--> J/psiLambda(0), with J/psi--> mu(+)mu(-) and Lambda(0)--> ppi(-), the B0 lifetime in the decay B0-->J/psiK(0)(S) with J/psi--> mu(+)mu(-) and K(0)(S)-->pi(+)pi(-), and the ratio of these lifetimes. The analysis is based on approximately 250 pb(-1) of data recorded with the D0 detector in pp collisions at sqrt[s] = 1.96 TeV. The Lambda(0)(b) lifetime is determined to be tau(Lambda(0)(b)) = 1.22(+0.22)(-0.18)(stat) +/- 0.04(syst) ps, the B0 lifetime tau(B0) = 1.40(+0.11)(-0.10)(stat) +/- 0.03(syst) ps, and the ratio tau(Lambda(0)(b))/tau(B0) = 0.87(+0.17)(-0.14)(stat) +/- 0.03(syst). In contrast with previous measurements using semileptonic decays, this is the first determination of the Lambda(0)(b) lifetime based on a fully reconstructed decay channel.  相似文献   
17.
We present results of searches for technirho (rho(T)), techniomega (omega(T)), and Z' particles, using the decay channels rho(T),omega(T),Z'-->e(+)e(-). The search is based on 124.8 pb(-1) of data collected by the D0 detector at the Fermilab Tevatron during 1992-1996. In the absence of a signal, we set 95% C.L. upper limits on the cross sections for the processes pp-->rho(T),omega(T),Z'-->e(+)e(-) as a function of the mass of the decaying particle. For certain model parameters, we exclude the existence of degenerate rho(T) and omega(T) states with masses below about 200 GeV. We exclude a Z' with mass below 670 GeV, assuming that it has the same couplings to fermions as the Z boson.  相似文献   
18.
We present a study of the dijet invariant mass spectrum in events with two jets produced in association with a W boson in data corresponding to an integrated luminosity of 4.3 fb(-1) collected with the D0 detector at √s = 1.96 TeV. We find no evidence for anomalous resonant dijet production and derive upper limits on the production cross section of an anomalous dijet resonance recently reported by the CDF Collaboration, investigating the range of dijet invariant mass from 110 to 170 GeV/c(2). The probability of the D0 data being consistent with the presence of a dijet resonance with 4 pb production cross section at 145 GeV/c(2) is 8×10(-6).  相似文献   
19.
We search for resonant WW or WZ production by using up to 5.4 fb(-1) of integrated luminosity collected by the D0 experiment in run II of the Fermilab Tevatron Collider. The data are consistent with the standard model background expectation, and we set limits on a resonance mass by using the sequential standard model W' boson and the Randall-Sundrum model graviton G as benchmarks. We exclude a sequential standard model W' boson in the mass range 180-690 GeV and a Randall-Sundrum graviton in the range 300-754 GeV at 95% C.L.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号