首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   2篇
化学   53篇
数学   8篇
物理学   9篇
  2022年   1篇
  2020年   2篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   11篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
51.
52.
Single clouds of cavitation bubbles, driven by 254 kHz focused ultrasound at pressure amplitudes in the range of 0.48–1.22 MPa, have been observed via high-speed shadowgraphic imaging at 1 × 106 frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48 MPa generated shock-waves with an average period of 7.9 ± 0.5 μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8 ± 0.3, 15.8 ± 0.3, 19.8 ± 0.2 μs, at pressure amplitudes of 0.64, 0.92 and 1.22 MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r = 0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200 μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0 MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales.  相似文献   
53.
54.
55.
56.
A hierarchical scheme has been developed for detection of bovine spongiform encephalopathy (BSE) in serum on the basis of its infrared spectral signature. In the first stage, binary subsets between samples originating from diseased and non-diseased cattle are defined along known covariates within the data set. Random forests are then used to select spectral channels on each subset, on the basis of a multivariate measure of variable importance, the Gini importance. The selected features are then used to establish binary discriminations within each subset by means of ridge regression. In the second stage of the hierarchical procedure the predictions from all linear classifiers are used as input to another random forest that provides the final classification. When applied to an independent, blinded validation set of 160 further spectra (84 BSE-positives, 76 BSE-negatives), the hierarchical classifier achieves a sensitivity of 92% and a specificity of 95%. Compared with results from an earlier study based on the same data, the hierarchical scheme performs better than linear discriminant analysis with features selected by genetic optimization and robust linear discriminant analysis, and performs as well as a neural network and a support vector machine.  相似文献   
57.
For analysis of hair samples derived from a pilot study (‘in vivo’ contamination of hair by sidestream marijuana smoke), an LC‐MS/MS method was developed and validated for the simultaneous quantification of Δ9‐tetrahydrocannabinolic acid A (THCA‐A), Δ9‐tetrahydrocannabinol (THC), cannabinol (CBN) and cannabidiol (CBD). Hair samples were extracted in methanol for 4 h under occasional shaking at room temperature, after adding THC‐D3, CBN‐D3, CBD‐D3 and THCA‐A‐D3 as an in‐house synthesized internal standard. The analytes were separated by gradient elution on a Luna C18 column using 0.1% HCOOH and ACN + 0.1% HCOOH. Data acquisition was performed on a QTrap 4000 in electrospray ionization‐multi reaction monitoring mode. Validation was carried out according to the guidelines of the German Society of Toxicological and Forensic Chemistry (GTFCh). Limit of detection and lower limit of quantification were 2.5 pg/mg for THCA‐A and 20 pg/mg for THC, CBN and CBD. A linear calibration model was applicable for all analytes over a range of 2.5 pg/mg or 20 pg/mg to 1000 pg/mg, using a weighting factor 1/x. Selectivity was shown for 12 blank hair samples from different sources. Accuracy and precision data were within the required limits for all analytes (bias between ?0.2% and 6.4%, RSD between 3.7% and 11.5%). The dried hair extracts were stable over a time period of one to five days in the dark at room temperature. Processed sample stability (maximum decrease of analyte peak area below 25%) was considerably enhanced by adding 0.25% lecithin (w/v) in ACN + 0.1% HCOOH for reconstitution. Extraction efficiency for CBD was generally very low using methanol extraction. Hence, for effective extraction of CBD alkaline hydrolysis is recommended. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
58.
Resorcin[4]arenes in an apolar solvent containing alcohols exist in three forms of self-assembled aggregates which have been characterised by the technique of diffusion NMR spectroscopy.  相似文献   
59.
Red blood cells are able to undergo shape change from the "normal" discocyte to either echinocytes or stomatocytes depending on a large variety of membrane and cytoplasmic parameters. Such shape changes can be relatively fast (within seconds) during the sedimentation of the cells in suspension or after the cells are getting in contact with artificial surfaces. High resolution digital holographic microscopy has been applied to study these processes. This method represents a new set-up allowing a contact-less and marker-free quantitative phase-contrast imaging of living cells under conventional laboratory conditions. With the applied technique we were able to detect and analyse fast shape changes of red blood cells.  相似文献   
60.
Mixed-conducting perovskite-type electrodes which are used as cathodes in solid oxide fuel cells (SOFCs) exhibit pronounced performance improvement after cathodic polarization. The current in situ study addresses the mechanism of this activation process which is still unknown. We chose the new perovskite-type material La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O(3±δ) which is a potential candidate for use in symmetrical solid oxide fuel cells (SFCs). We prepared La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O(3±δ) thin film model electrodes on YSZ (111) single crystals by pulsed laser deposition (PLD). Impedance spectroscopy (EIS) measurements show that the kinetics of these electrodes can be drastically improved by applying a cathodic potential. To understand the origin of the enhanced electrocatalytic activity the surfaces of operating LSCrM electrodes were studied in situ (at low pressure) with spatially resolving X-ray photoelectron spectroscopy (μ-ESCA, SPEM) and quasi static secondary ion mass spectrometry (ToF-SIMS) after applying different electrical potentials in the SIMS chamber. We observed that the electrode surfaces which were annealed at 600 °C are enriched significantly in strontium. Subsequent cathodic polarization decreases the strontium surface concentration while anodic polarization increases the strontium accumulation at the electrode surface. We propose a mechanism based on the reversible incorporation of a passivating SrO surface phase into the LSCrM lattice to explain the observed activation/deactivation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号