首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   3篇
  国内免费   10篇
化学   265篇
晶体学   2篇
力学   15篇
数学   63篇
物理学   361篇
  2019年   4篇
  2016年   9篇
  2015年   6篇
  2013年   29篇
  2012年   26篇
  2011年   17篇
  2010年   15篇
  2009年   14篇
  2008年   19篇
  2007年   24篇
  2006年   15篇
  2005年   29篇
  2004年   19篇
  2003年   17篇
  2002年   21篇
  2001年   13篇
  2000年   17篇
  1999年   11篇
  1998年   8篇
  1997年   6篇
  1996年   21篇
  1995年   19篇
  1994年   24篇
  1993年   36篇
  1992年   27篇
  1991年   12篇
  1990年   13篇
  1989年   13篇
  1988年   15篇
  1987年   8篇
  1986年   11篇
  1985年   15篇
  1984年   5篇
  1982年   7篇
  1981年   5篇
  1980年   12篇
  1979年   10篇
  1978年   7篇
  1977年   6篇
  1976年   16篇
  1975年   11篇
  1974年   9篇
  1973年   13篇
  1970年   3篇
  1968年   3篇
  1967年   4篇
  1966年   5篇
  1963年   7篇
  1960年   7篇
  1890年   3篇
排序方式: 共有706条查询结果,搜索用时 15 毫秒
41.
Protein kinases are an important class of enzymes controlling virtually all cellular signaling pathways. Consequently, selective inhibitors of protein kinases have attracted significant interest as potential new drugs for many diseases. Computational methods, including molecular docking, have increasingly been used in the inhibitor design process [1]. We have considered several docking packages in order to strengthen our kinase inhibitor work with computational capabilities. In our experience, AutoDock offered a reasonable combination of accuracy and speed, as opposed to methods that specialize either in fast database searches or detailed and computationally intensive calculations.However, AutoDock did not perform well in cases where extensive hydrophobic contacts were involved, such as docking of SB203580 to its target protein kinase p38. Another shortcoming was a hydrogen bonding energy function, which underestimated the attraction component and, thus, did not allow for sufficiently accurate modeling of the key hydrogen bonds in the kinase-inhibitor complexes.We have modified the parameter set used to model hydrogen bonds, which increased the accuracy of AutoDock and appeared to be generally applicable to many kinase-inhibitor pairs without customization. Binding to largely hydrophobic sites, such as the active site of p38, was significantly improved by introducing a correction factor selectively affecting only carbon and hydrogen energy grids, thus, providing an effective, although approximate, treatment of solvation.  相似文献   
42.
We have calculated certain dynamic polarizabilities (for both real and imaginary frequencies) for H, He, and H2 and the dispersion-energy coefficients for long-range interactions between them. We have done so in a sum-over-states formalism with explicitly electron-correlated wave functions to describe the states. To be precise, we have determined the dipole (α1), quadrupole (α2), and octupole (α3) polarizabilities of H and He for real frequencies (ω) in a range between zero and the first electronic-transition frequency and for imaginary frequencies (iω) on a 32-point Gauss-Legendre grid running from zero to ?ω = 20 Eh, and for H2, we have found the dipole (α), quadrupole (C), and dipole–octupole (E) polarizability tensors for the same real and imaginary frequencies. The dispersion-energy coefficients, obtained by combining the sum-over-states for-malism for the polarizabilities with analytic integration over ω, gave values of C6, C8, and C10 for the atom–atom systems; C, C, C, C, and C for the atom–diatom systems; and C6, C and C for the H2? H2 system. Nearly all the results are considered to be more reliable than those hitherto published and some have been obtained for the first time, e.g., C(iω), E(ω), and E(iω) for H2 and C, C, and C for the H? H2 system. © 1993 John Wiley & Sons, Inc.  相似文献   
43.
Two problems have long been confused with each other: the gravitational redshift as discussed by the equivalence principle; and the Doppler shift observed by a detector which moves with constant proper acceleration away from a stationary source. We here distinguish these two problems and give for the first time a solution of the former which is exact within the context of the equivalence principle in a sense discussed in the paper. The equivalence principle leads to transformations between flat spacetimes. These are analyzed, and a generalized Lorentz transformation is proposed which covers transformations from inertial to uniformly accelerated frames of reference.  相似文献   
44.
Here, we report the synthesis and characterization of a novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its composites with nano-hydroxyapatite (nHA) as potential weight-bearing composite. The 4PLAUMA/nHA ratios of the composites were 1:3, 2:5, 1:2 and 1:1. FTIR and NMR characterization showed urethane and maleate units integrated into the PLA matrix. Energy dispersion and Auger electron spectroscopy confirmed homogeneous distribution of nHA in the polymer matrix. Maximum moduli and strength of the composites of 4PLAUMA/nHA, respectively, are 1973.31 ± 298.53 MPa and 78.10 ± 3.82 MPa for compression, 3630.46 ± 528.32 MPa and 6.23 ± 1.44 MPa for tension, 1810.42 ± 86.10 MPa and 13.00 ± 0.72 for bending, and 282.46 ± 24.91 MPa and 5.20 ± 0.85 MPa for torsion. The maximum tensile strains of the polymer and composites are in the range of 5–93%, and their maximum torsional strains vary from 0.26 to 0.90. The composites exhibited very slow degradation rates in aqueous solution, from approximately 50% mass remaining for the pure polymer to 75% mass remaining for composites with high nHA contents, after a period of 8 weeks. Increase in ceramic content increased mechanical properties, but decreased maximum strain, degradation rate, and swelling of the composites. Human bone marrow stem cells and human endothelial cells adhered and proliferated on 4PLAUMA films and degradation products of the composites showed little-to-no toxicity. These results demonstrate that novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its nHA composites may have potential applications in regenerative medicine.  相似文献   
45.
Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase‐separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of the PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 532–541  相似文献   
46.
47.
48.
We examine several numerical techniques for the calculation of the dynamics of quantum systems. In particular, we single out an iterative method which is based on expanding the time evolution operator into a finite series of Chebyshev polynomials. The Chebyshev approach benefits from two advantages over the standard time-integration Crank-Nicholson scheme: speedup and efficiency. Potential competitors are semiclassical methods such as the Wigner-Moyal or quantum tomographic approaches. We outline the basic concepts of these techniques and benchmark their performance against the Chebyshev approach by monitoring the time evolution of a Gaussian wave packet in restricted one-dimensional (1D) geometries. Thereby the focus is on tunnelling processes and the motion in anharmonic potentials. Finally we apply the prominent Chebyshev technique to two highly non-trivial problems of current interest: (i) the injection of a particle in a disordered 2D graphene nanoribbon and (ii) the spatiotemporal evolution of polaron states in finite quantum systems. Here, depending on the disorder/electron-phonon coupling strength and the device dimensions, we observe transmission or localisation of the matter wave.  相似文献   
49.
50.
Time-dependent photoexcitation and optical spectroscopy of pi-conjugated molecules is described using a new method for the simulation of excited state molecular dynamics in extended molecular systems with sizes up to hundreds of atoms. Applications are made to poly(p-phenylene vinylene) oligomers. Our analysis shows self-trapping of excitations on about six repeat units in the course of photoexcitation relaxation, identifies specific slow (torsion) and fast (bond-stretch) nuclear motions strongly coupled to the electronic degrees of freedom, and predicts spectroscopic signatures of molecular conformations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号