首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   622篇
  免费   23篇
  国内免费   4篇
化学   521篇
晶体学   2篇
力学   4篇
数学   81篇
物理学   41篇
  2023年   4篇
  2022年   4篇
  2021年   10篇
  2020年   11篇
  2019年   13篇
  2018年   6篇
  2017年   8篇
  2016年   17篇
  2015年   21篇
  2014年   23篇
  2013年   32篇
  2012年   41篇
  2011年   40篇
  2010年   33篇
  2009年   31篇
  2008年   42篇
  2007年   36篇
  2006年   36篇
  2005年   27篇
  2004年   29篇
  2003年   20篇
  2002年   20篇
  2001年   23篇
  2000年   14篇
  1999年   14篇
  1998年   8篇
  1997年   8篇
  1996年   11篇
  1995年   6篇
  1994年   7篇
  1993年   6篇
  1992年   15篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1963年   1篇
  1960年   3篇
  1941年   1篇
  1933年   1篇
排序方式: 共有649条查询结果,搜索用时 0 毫秒
61.
A monitor is described which provides the on-line determination of mercury in river water at concentrations from 20 to 1000 ng/L. The measurement includes an on-line digestion with Br/BrO3 and UV-radiation. Each determination is controlled by an on-line addition of 50 and 100 ng/L mercury carried out by pre-dilution of a 500 and 1000 ng/L stock solution using sequential injection analysis (SIA). One cycle of analysis takes 20 min and results in nine signals. A five days stand-alone operation has been performed successfully. Details are also published at web page: “http/www.rzbd.fh-hamburg.de/¶~prmercol”  相似文献   
62.
The title compound [systematic name: di­methyl 4,4′‐(1,3,4‐oxa­diazole‐2,5‐diyl)­di­phenyl­enedi­carboxyl­ate], C18H14N2O5, crystallizes under similar conditions in two different ortho­rhombic crystalline forms. In both forms, the mol­ecule consists of two equivalent parts. In form 1, these parts are related by a twofold axis of space group Pbcn, and in form 2, by a mirror plane of space group Cmc21. The O atom of the oxa­di­azole ring occupies a special position on the twofold axis and on the mirror plane in forms 1 and 2, respectively.  相似文献   
63.
64.
Irradiation (350 nm) of 2‐alkynylcyclohex‐2‐enones 1 in benzene in the presence of an excess of 2‐methylbut‐1‐en‐3‐yne ( 2 ) affords in each case a mixture of a cis‐fused 3,4,4a,5,6,8a‐hexahydronaphthalen‐1(2H)‐one 3 and a bicyclo[4.2.0]octan‐2‐one 4 (Scheme 2), the former being formed as main product via 1,6‐cyclization of the common biradical intermediate. The (parent) cyclohex‐2‐enone and other alkylcyclohex‐2‐enones 7 also give naphthalenones 8 , albeit in lower yields, the major products being bicyclo[4.2.0]octan‐2‐ones (Scheme 4). No product derived from such a 1,6‐cyclization is observed in the irradiation of 3‐alkynylcyclohex‐2‐enone 9 in the presence of 2 (Scheme 4). Irradiation of the 2‐cyano‐substituted cyclohexenone 12 under these conditions again affords only traces of naphthalenone 13 , the main product now being the substituted bicyclo[4.2.0]oct‐7‐ene 16 (Scheme 5), resulting from [2+2] cycloaddition of the acetylenic C−C bond of 2 to excited 12 .  相似文献   
65.
Synthesis and Characterization of New Intramolecularly Nitrogen‐stabilized Organoaluminium‐ and Organogallium Alkoxides The intramolecularly nitrogen stabilized organoaluminium alkoxides [Me2Al{μ‐O(CH2)3NMe2}]2 ( 1a ), Me2AlOC6H2(CH2NMe2)3‐2,4,6 ( 2a ), [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]2 ( 3a ) and [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NHCH2Ph}]2 ( 4 ) are formed by reacting equimolar amounts of AlMe3 and Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, (S)‐i‐PrNHCH(i‐Pr)CH2OH, or (S)‐PhCH2NHCH(i‐Pr)CH2OH, respectively. An excess of AlMe3 reacts with Me2N(CH2)2OH, Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, and (S)‐i‐PrNHCH(i‐Pr)CH2OH producing the “pick‐a‐back” complexes [Me2AlO(CH2)2NMe2](AlMe3) ( 5 ), [Me2AlO(CH2)3NMe2](AlMe3) ( 1b ), [Me2AlOC6H2(CH2NMe2)3‐2,4,6](AlMe3)2 ( 2b ), and [(S)‐Me2AlOCH2CH(i‐Pr)NH‐i‐Pr](AlMe3) ( 3b ), respectively. The mixed alkyl‐ or alkenylchloroaluminium alkoxides [Me(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 6 ) and [{CH2=C(CH3)}(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 8 ) are to obtain from Me2AlCl and Me2N(CH2)2OH and from [Cl2Al{μ‐O(CH2)2NMe2}]2 ( 7 ) and CH2=C(CH3)MgBr, respectively. The analogous dimethylgallium alkoxides [Me2Ga{μ‐O(CH2)3NMe2}]2 ( 9 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]n ( 10 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NHCH2Ph}]n ( 11 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)N(Me)CH2Ph}]n ( 12 ) and [(S)‐Me2Ga{μ‐OCH2(C4H7NHCH2Ph)}]n ( 13 ) result from the equimolar reactions of GaMe3 with the corresponding alcohols. The new compounds were characterized by elemental analyses, 1H‐, 13C‐ and 27Al‐NMR spectroscopy, and mass spectrometry. Additionally, the structures of 1a , 1b , 2a , 2b , 3a , 5 , 6 and 8 were determined by single crystal X‐ray diffraction.  相似文献   
66.
New indides Ce3Ge0.66In4.34 and Ce11Ge4.74In5.26 were synthesized from the elements by arc‐melting and subsequent annealing at 870 K. Single crystals were grown through special annealing procedures in sealed tantalum tubes in a high‐frequency furnace. Both compounds were investigated on the basis of X‐ray powder and single crystal data: I4/mcm, La3GeIn4 type, a = 848.8(1), c = 1192.0(2) pm, Z = 4, wR2 = 0.0453, 499 F2 values, 17 variables for Ce3Ge0.66In4.34 and I4/mmm, Sm11Ge4In6 type (ordered version of the Ho11Ge10 type), a = 1199.3(2), c = 1662.0(3) pm, wR2 = 0.0507, 1217 F2 values, 41 variables for Ce11Ge4.74In5.26. The Ce3Ge0.66In4.34 structure shows a mixed Ge/In occupancy on the 4c Wyckoff position. This site is octahedrally coordinated by cerium atoms. These octahedra share all edges, leading to a three‐dimensional network. The latter is penetrated by a two‐dimensional indium substructure which consists of flattened tetrahedra at In–In distances of 291 and 300 pm. The Ce11Ge4.74In5.26 structure contains three crystallographically independent germanium sites. The latter are coordinated by eight or nine cerium neighbors. These CN8 and CN9 polyhedra are condensed to a complex network which is penetrated by a three‐dimensional indium network with In–In distances of 301–314 pm. The 16m site shows a mixed In/Ge occupancy. Chemical bonding in both compounds is dominated by the p elements. Both ternaries studied exhibit localized magnetism due to the presence of Ce3+ ions. The compound Ce3GeIn4 remains paramagnetic down to 1.72 K, whereas Ce11Ge4In6 orders ferromagnetically at TC = 7.5 K.  相似文献   
67.
Nanoparticles of the spin‐crossover coordination polymer [FeL(bipy)]n were synthesized by confined crystallization within the core of polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) diblock copolymer micelles. The 4VP units in the micellar core act as coordination sites for the Fe complex. In the bulk material, the spin‐crossover nanoparticles in the core are well isolated from each other allowing thermal treatment without disintegration of their structure. During annealing above the glass transition temperature of the PS block, the transition temperature is shifted gradually to higher temperatures from the as‐synthesized product (T1/2↓=163 K and T1/2↑=170 K) to the annealed product (T1/2↓=203 K and T1/2↑=217 K) along with an increase in hysteresis width from 6 K to 14 K. Thus, the spin‐crossover properties can be shifted towards the properties of the related bulk material. The stability of the nanocomposite allows further processing, such as electrospinning from solution.  相似文献   
68.
La3B6O13(OH) was obtained by a high-pressure/high-temperature experiment at 6 GPa and 1673 K. The compound crystallizes in the space group P21 (no. 4) with the lattice parameters a=4.785(2), b=12.880(4), c=7.433(3) Å, and β=90.36(10)°, and is built up of corner- as well as edge-sharing BO4 tetrahedra. It represents the first acentric high-pressure borate containing these B2O6 entities. The compound develops borate layers of „sechser“-rings with the La3+ cations positioned between the layers. Single-crystal and powder X-ray diffraction, vibrational and MAS NMR spectroscopy, second-harmonic generation (SHG) and thermoanalytical measurements, as well as computational methods were used to affirm the proposed structure and the B2O6 entities.  相似文献   
69.
Chemistry that uses metalloid tin clusters as a starting material is of fundamental interest towards understanding the reactivity of such compounds. Since we identified {Sn10[Si(SiMe3)3]4}2? 7 as an ideal candidate for such reactions, we present a further step in the understanding of metalloid tin cluster chemistry. In contrast to germanium chemistry, ligand elimination seems to be a major reaction channel, which leads to the more open metalloid cluster {Sn10[Si(SiMe3)3]3}? 9 , in which the Sn core is only shielded by three Si(SiMe3)3 ligands. Compound 9 is obtained through different routes and is crystallised together with two different countercations. Besides the structural characterisation of this novel metalloid tin cluster, the electronic structure is analysed by 119Sn Mössbauer spectroscopy. Additionally, possible reaction pathways are discussed. The presented first step into the chemistry of metalloid tin clusters thus indicates that, with respect to metalloid germanium clusters, more reaction channels are accessible, thereby leading to a more complex reaction system.  相似文献   
70.
Single crystals of SrIr9In18 were obtained by induction melting of the elements in a glassy carbon crucible followed by annealing at 1070 K. SrIr9In18 was structurally characterized by X-ray powder and single crystal diffraction: P4 m2, a = 811.21(5), c = 854.49(5) pm, wR2 = 0.0511, 1223 F2 values, and 46 variables. The structure is of a new type. The basic building units are Ir@In8 (distorted square-prismatic, square anti-prismatic and bicapped trigonal prismatic coordination) and Ir@In9 (distorted trigonal prismatic coordination) polyhedra, which condense to a three-dimensional network, which leaves large cavities for the strontium cations, which are coordinated to four iridium and twelve indium atoms. The [Ir9In18]2– polyanionic network is stabilized through Ir–In (267–290 pm) and In–In (302–354 pm) bonding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号