首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110367篇
  免费   19020篇
  国内免费   9843篇
化学   89061篇
晶体学   1108篇
力学   5788篇
综合类   716篇
数学   11385篇
物理学   31172篇
  2024年   536篇
  2023年   1588篇
  2022年   2579篇
  2021年   2883篇
  2020年   3859篇
  2019年   4971篇
  2018年   3325篇
  2017年   2834篇
  2016年   6284篇
  2015年   6557篇
  2014年   7125篇
  2013年   9039篇
  2012年   9134篇
  2011年   8531篇
  2010年   7137篇
  2009年   7051篇
  2008年   6860篇
  2007年   5875篇
  2006年   5353篇
  2005年   4982篇
  2004年   4147篇
  2003年   3428篇
  2002年   4108篇
  2001年   3273篇
  2000年   2929篇
  1999年   2166篇
  1998年   1543篇
  1997年   1309篇
  1996年   1343篇
  1995年   1153篇
  1994年   1073篇
  1993年   910篇
  1992年   806篇
  1991年   709篇
  1990年   596篇
  1989年   506篇
  1988年   394篇
  1987年   365篇
  1986年   320篇
  1985年   315篇
  1984年   220篇
  1983年   197篇
  1982年   155篇
  1981年   124篇
  1980年   87篇
  1978年   58篇
  1977年   52篇
  1975年   59篇
  1974年   50篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
The centrosymmetric binuclear structure of [Pb2(H‐Norf)2(ONO2)4]shows the geometry around each lead(II) atom to be distorted trigonal bipyramidal with Pb–O distances ranging from 2.357(3) to 2.769(4) Å. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
82.
Two orange phosphorescent iridium complex monomers, 9‐hexyl‐9‐(iridium (III)bis(2‐(4′‐fluorophenyl)‐4‐phenylquinoline‐N,C2′)(tetradecanedionate‐11,13))‐2,7‐dibromofluorene (Br‐PIr) and 9‐hexyl‐9‐(iridium(III)bis(2‐(4′‐fluorophenyl)‐4‐methylquinoline‐N,C2′)(tetradecanedionate‐11,13))‐2,7‐dibromofluorene (Br‐MIr), were successfully synthesized. The Suzuki polycondensation of 2,7‐bis(trimethylene boronate)‐9,9‐dioctylfluorene with 2,7‐dibromo‐9,9‐dioctylfluorene and Br‐PIr or Br‐MIr afforded two series of copolymers, PIrPFs and MIrPFs, in good yields, in which the concentrations of the phosphorescent moieties were kept small (0.5–3 mol % feed ratio) to realize incomplete energy transfer. The photoluminescence (PL) of the copolymers showed blue‐ and orange‐emission peaks. A white‐light‐emitting diode with a configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/PIr05PF (0.5 mol % feed ratio of Br‐PIr)/Ca/Al exhibited a luminous efficiency of 4.49 cd/A and a power efficiency of 2.35 lm/W at 6.0 V with Commission Internationale de L'Eclairage (CIE) coordinates of (0.46, 0.33). The CIE coordinates were improved to (0.34, 0.33) when copolymer MIr10PF (1.0 mol % feed ratio of Br‐MIr) was employed as the white‐emissive layer. The strong orange emission in the electroluminescence spectra in comparison with PL for these kinds of polymers was attributed to the additional contribution of charge trapping in the phosphorescent dopants. © 2007 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 45: 1746–1757, 2007  相似文献   
83.
提出了切伦科夫相关时间测量(CCT)中初始粒子在辐射体里产生的δ电子的干扰问题,以及降低干扰的方法. 通过模拟计算给出了北京τ-C工厂探测器初步设计中CCT的π/K分辨本领.  相似文献   
84.
Three ab initio calculations (HF/6-3IG, HF/6-3IG*, and HF/6-3IG**) on 2,4,6-trinitrotoluene were made, The results compare well with xray data, except dihedral angles of NO2 relative to the plane of the benzene ring. The deviations are attributed to packing forces and steric effects in the crystal. The most stable structure was a torsional angle 10° of the methyl top with the benzene ring, unlike toluene. The rotational barriers of the methyl top and the 4-nitro group are small. Hydrogen bonding, dipole moments and total atomic charges arc calculated.  相似文献   
85.
In this article we survey the Trefftz method (TM), the collocation method (CM), and the collocation Trefftz method (CTM). We also review the coupling techniques for the interzonal conditions, which include the indirect Trefftz method, the original Trefftz method, the penalty plus hybrid Trefftz method, and the direct Trefftz method. Other boundary methods are also briefly described. Key issues in these algorithms, including the error analysis, are addressed. New numerical results are reported. Comparisons among TMs and other numerical methods are made. It is concluded that the CTM is the simplest algorithm and provides the most accurate solution with the best numerical stability. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   
86.
This article presents and analyzes a simple method for the exterior Laplace equation through the coupling of finite and boundary element methods. The main novelty is the use of a smooth parametric artificial boundary where boundary elements fit without effort together with a straight approximate triangulation in the bounded area, with the coupling done only in nodes. A numerically integrated version of the algorithm is also analyzed. Finally, an isoparametric variant with higher order is proposed. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 555–570, 2003  相似文献   
87.
Two new diamines, 2,4‐diaminotriphenylamine ( 3 ) and N‐(2,4‐diaminophenyl)carbazole ( 4 ), were synthesized via the cesium fluoride‐mediated aromatic substitution reactions of 1‐fluoro‐2,4‐dinitrobenzene with diphenylamine and carbazole, followed by palladium‐catalyzed hydrazine reduction. Amorphous and soluble aramids having pendent diphenylamino and carbazolyl groups were prepared by the phosphorylation polycondensation of aromatic dicarboxylic acids with diamines 3 and 4 , respectively. The aramids derived from diamine 3 had sufficiently high molecular weights to permit the casting of flexible and tough films. They exhibited excellent mechanical properties and moderately high softening temperatures in the 221–298 °C range. However, the reactions of diamine 4 with aromatic diacids gave relatively lower molecular weights products that could not afford flexible films. For a comparative purpose, the parent aramids derived from m‐phenylenediamine and aromatic diacids were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3302–3313, 2004  相似文献   
88.
A novel copolymer, poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐2,6‐pyridylene‐1,2‐ethenylene) ( P3 ), containing N‐hexyl‐3,7‐phenothiazylene and 2,6‐pyridylene chromophores was synthesized to investigate the effect of protonation, metal complexation, and chemical oxidation on its absorption and photoluminescence (PL). Poly(N‐hexyl‐3,8‐iminodibenzyl‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) and poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) ( P2 ), consisting of 1,3‐divinylbenzene alternated with N‐hexyl‐3,8‐iminodibenzyl and N‐hexyl‐3,7‐phenothiazylene, respectively, were also prepared for comparison. Electrochemical investigations revealed that P3 exhibited lower band gaps (2.34 eV) due to alternating donor and acceptor conjugated units (push–pull structure). The absorption and PL spectral variations of P3 were easily manipulated by protonation, metal chelation, and chemical oxidation. P3 displayed significant bathochromic shifts when protonated with trifluoroacetic acid in chloroform. The complexation of P3 with Fe3+ led to a significant absorption change and fluorescence quenching, and this implied the coordination of ferric ions with the 2,6‐pyridylene groups in the backbone. Moreover, both phenothiazylene‐containing P2 and P3 showed conspicuous PL quenching with a slight redshift when oxidized with NOBF4. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1272–1284, 2004  相似文献   
89.
2,5‐Bis(2‐bromofluorene‐7‐yl)silole was prepared by a modified one‐pot synthesis with a reverse addition procedure, from which novel silole‐containing polyfluorenes with binary random and alternating structures (silole contents between 4.5 and 25% and high Mw up to 509 kDa were successfully synthesized. The well‐defined repeating unit of the alternating copolymer comprises a terfluorene and a silole ring. Optoelectronic properties including UV absorption, electrochemistry, photoluminescence (PL), and electroluminescence (EL) of the copolymers were examined. The different excitation energy transfers from fluorene to silole of the copolymers in solution and in the solid state were compared. The films of the copolymers showed silole‐dominant green emissions with high absolute PL quantum yields up to 83%. EL devices of the copolymers with a configuration of ITO/PEDOT/copolymer/Ba/Al displayed exclusive silole emissions peaked at around 543 nm and the highest EL efficiency was achieved with the alternating copolymer. Using the alternating copolymer and poly(9,9‐dioctylfluorene) as the blend‐type emissive layer, a maximum external quantum efficiency of 1.99% (four times to that of the neat film) was realized, which was a high efficiency so far reported for silole‐containing polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 756–767, 2007  相似文献   
90.
The reversible addition–fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANs were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. 1H NMR analysis confirmed the high chain‐end functionality of the resultant polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1272–1281, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号