首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106467篇
  免费   28307篇
  国内免费   21242篇
化学   69950篇
晶体学   1469篇
力学   7059篇
综合类   410篇
数学   13373篇
物理学   63755篇
  2024年   486篇
  2023年   1348篇
  2022年   1724篇
  2021年   1775篇
  2020年   2202篇
  2019年   2682篇
  2018年   2442篇
  2017年   2961篇
  2016年   3680篇
  2015年   3873篇
  2014年   4070篇
  2013年   6287篇
  2012年   7163篇
  2011年   8709篇
  2010年   11306篇
  2009年   11395篇
  2008年   5396篇
  2007年   4729篇
  2006年   4373篇
  2005年   4495篇
  2004年   4832篇
  2003年   3923篇
  2002年   3770篇
  2001年   3897篇
  2000年   2924篇
  1999年   3112篇
  1998年   2637篇
  1997年   2406篇
  1996年   2706篇
  1995年   3076篇
  1994年   3094篇
  1993年   3099篇
  1992年   2650篇
  1991年   2290篇
  1990年   1910篇
  1989年   1984篇
  1988年   1937篇
  1987年   1187篇
  1986年   1252篇
  1985年   925篇
  1984年   1030篇
  1982年   921篇
  1981年   753篇
  1980年   792篇
  1979年   533篇
  1978年   537篇
  1977年   638篇
  1976年   1044篇
  1973年   441篇
  1972年   538篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
21.
Embedding endohdedral metallofullerenes (EMFs) into electron donor–acceptor systems is still a challenging task owing to their limited quantities and their still largely unexplored chemical properties. In this study, we have performed a 1,3‐dipolar cycloaddition reaction of a corrole‐based precursor with Sc3N@C80 to regioselectively form a [5,6]‐adduct ( 1 ). The successful attachment of the corrole moiety was confirmed by mass spectrometry. In the electronic ground state, absorption spectra suggest sizeable electronic communications between the electron acceptor and the electron donor. Moreover, the addition pattern occurring at a [5,6]‐bond junction is firmly proven by NMR spectroscopy and electrochemical investigations performed with 1 . In the electronically excited state, which is probed in photophysical assays with 1 , a fast electron‐transfer yields the radical ion pair state consisting of the one‐electron‐reduced Sc3N@C80 and of the one‐electron‐oxidized corrole upon its exclusive photoexcitation. As such, our results shed new light on the practical work utilizing EMFs as building blocks in photovoltaics.  相似文献   
22.
23.
24.
In the view of substrate availability, atomic efficiency and cost, directly using arenols as coupling partners in cross‐coupling, would be one of the most attractive goals. Up to date, many efforts have been made to activate the C—O bond of phenols with different strategies, for example, through in‐situ formed intermediates, through a catalytic reductive dearomatization‐condensation‐rearomatization sequence or catalytic deoxygenation. In this review, we summarized recent advances in cross‐couplings of arenols as the electrophiles via C—O activation.  相似文献   
25.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   
26.
The current study attempted, for the first time, to qualitatively and quantitatively determine the phytochemical components of Elatostema papillosum methanol extract and their biological activities. The present study represents an effort to correlate our previously reported biological activities with a computational study, including molecular docking, and ADME/T (absorption, distribution, metabolism, and excretion/toxicity) analyses, to identify the phytochemicals that are potentially responsible for the antioxidant, antidepressant, anxiolytic, analgesic, and anti-inflammatory activities of this plant. In the gas chromatography-mass spectroscopy analysis, a total of 24 compounds were identified, seven of which were documented as being bioactive based on their binding affinities. These seven were subjected to molecular docking studies that were correlated with the pharmacological outcomes. Additionally, the ADME/T properties of these compounds were evaluated to determine their drug-like properties and toxicity levels. The seven selected, isolated compounds displayed favorable binding affinities to potassium channels, human serotonin receptor, cyclooxygenase-1 (COX-1), COX-2, nuclear factor (NF)-κB, and human peroxiredoxin 5 receptor proteins. Phytol acetate, and terpene compounds identified in E. papillosum displayed strong predictive binding affinities towards the human serotonin receptor. Furthermore, 3-trifluoroacetoxypentadecane showed a significant binding affinity for the KcsA potassium channel. Eicosanal showed the highest predicted binding affinity towards the human peroxiredoxin 5 receptor. All of these findings support the observed in vivo antidepressant and anxiolytic effects and the in vitro antioxidant effects observed for this extract. The identified compounds from E. papillosum showed the lowest binding affinities towards COX-1, COX-2, and NF-κB receptors, which indicated the inconsequential impacts of this extract against the activities of these three proteins. Overall, E. papillosum appears to be bioactive and could represent a potential source for the development of alternative medicines; however, further analytical experiments remain necessary.  相似文献   
27.
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar"structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns.The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively.The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material.In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.  相似文献   
28.
Guo  Yan  Li  Zhuang  Wei  Yuxi  Zhang  Xinxu  Shi  Kexin 《Journal of Solid State Electrochemistry》2022,26(4):1051-1065
Journal of Solid State Electrochemistry - Polyvinylpyrrolidone (PVP) and graphene (G)-modified iron oxides (Fe2O3-PVP-G) are prepared by a simple hydrothermal reaction. Their morphology and...  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号