首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   2篇
  国内免费   1篇
化学   79篇
力学   3篇
数学   8篇
物理学   18篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   7篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   10篇
  2007年   7篇
  2006年   10篇
  2005年   8篇
  2004年   8篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1994年   3篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
排序方式: 共有108条查询结果,搜索用时 46 毫秒
11.
The ultrafast vibrational phase relaxation of O–H stretch in bulk water is investigated in molecular dynamics simulations. The dephasing time (T2) of the O–H stretch in bulk water calculated from the frequency fluctuation time correlation function (Cω(t)) is in the range of 70–80 femtosecond (fs), which is comparable to the characteristic timescale obtained from the vibrational echo peak shift measurements using infrared photon echo [W.P. de Boeij, M.S. Pshenichnikov, D.A. Wiersma, Ann. Rev. Phys. Chem. 49 (1998) 99]. The ultrafast decay of Cω(t) is found to be responsible for the ultrashort T2 in bulk water. Careful analysis reveals the following two interesting reasons for the ultrafast decay of Cω(t). (A) The large amplitude angular jumps of water molecules (within 30–40 fs time duration) provide a large scale contribution to the mean square vibrational frequency fluctuation and gives rise to the rapid spectral diffusion on 100 fs time scale. (B) The projected force, due to all the atoms of the solvent molecules on the oxygen (FO(t)) and hydrogen (FH(t)) atom of the O–H bond exhibit a large negative cross-correlation (NCC). We further find that this NCC is partly responsible for a weak, non-Arrhenius temperature dependence of the dephasing rate.  相似文献   
12.
Recent experiments have shown that the time dependence of fluorescence Stokes shift of a chromophore is substantially different when the chromophore is located in a molten globule (MG) state and in the native state of the same protein. To understand the origin of this difference, particularly the role of water in the differential solvation of the protein in the native and the MG states, we have carried out fully atomistic molecular dynamics simulations with explicit water of a partially unfolded MG state of the protein HP-36 and compared the results with the solvation dynamics of the protein in the folded native state. It is observed that the polar solvation dynamics of the three helical segments of the protein is influenced in a nonuniform heterogeneous manner in the MG state. While the equilibrium solvation time correlation function for helix-3 has been found to relax faster in the MG state as compared to that in the native state, the decay of the corresponding function for the other two helices slows down in the MG state. A careful analysis shows that the origin of such heterogeneous relative solvation behavior lies in the differential location of the polar probe residues and their exposure to bulk solvent. We find a significant negative cross-correlation between the contribution (to the solvation energy of a tagged amino acid residue) of water and the other groups of the protein, indicating a competing role in solvation. The sensitivity of solvation dynamics to the secondary structure and the immediate environment can be used to discriminate the partially unfolded and folded states. These results therefore should be useful in explaining recent solvation dynamics experiments on native and MG states of proteins.  相似文献   
13.
Recent optical Kerr effect experiments have revealed a power law decay of the measured signal with a temperature independent exponent at short-to-intermediate times for a number of liquid crystals in the isotropic phase near the isotropic-nematic transition and supercooled molecular liquids above the mode coupling theory critical temperature. In this work, the authors investigate the temperature dependence of short-to-intermediate time orientational relaxation in a model thermotropic liquid crystal across the isotropic-nematic transition and in a binary mixture across the supercooled liquid regime in molecular dynamics simulations. The measure of the experimentally observable optical Kerr effect signal is found to follow a power law decay at short-to-intermediate times for both systems in agreement with recent experiments. In addition, the temperature dependence of the power law exponent is found to be rather weak. As the model liquid crystalline system settles into the nematic phase upon cooling, the decay of the single-particle second-rank orientational time correlation function exhibits a pattern that is similar to what has been observed for supercooled liquids.  相似文献   
14.
Damage caused by oxidative stress is involved in many types of diseases, including breast cancer. Our aim was to detect the oxidative stress parameters and blood plasma changes with differential scanning calorimetry (DSC) in breast cancer patients. The study included 40 adult breast cancer women who were grouped according to tumor diameter, regional lymph node metastases, proliferative activity, receptor status and postoperative chemotherapy. To monitor oxidative stress, malondialdehyde, oxygen free radicals (OFRs), activity of myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) were measured. Denaturation of plasma components was detected in Setaram Micro DSC-II calorimeter. The total production of OFRs, the MPO activity and lipidperoxidation were significantly increased in each breast cancer patients considering the tumor size, the metastatic lymph nodes, the proliferation activity and receptor status compared with healthy controls (p < 0.05). These pro-oxidants were slightly elevated without chemotherapy, but their values were increased significantly in chemotherapy-receiving group. The activity of SOD and CAT was significantly decreased in all groups, and in regard to the chemotherapy, they were changed significantly parallel to the severity of disease. Regarding to both the increased tumor diameter and the increased number of affected lymph nodes, DSC measurements showed a strong relationship between the maximum excess heat capacity (Cpmax) of the blood plasma and the severity of disease. The study demonstrated that oxidative stress is implicated in breast carcinoma and chemotherapy aggravates these changes which confirmed the plasma DSC measurements also.  相似文献   
15.
In this paper, we present parallel bundle-based decomposition algorithms to solve a class of structured large-scale convex optimization problems. An example in this class of problems is the block-angular linear programming problem. By dualizing, we transform the original problem to an unconstrained nonsmooth concave optimization problem which is in turn solved by using a modified bundle method. Further, this dual problem consists of a collection of smaller independent subproblems which give rise to the parallel algorithms. We discuss the implementation on the CRYSTAL multi-computer. Finally, we present computational experience with block-angular linear programming problems and observe that more than 70% efficiency can be obtained using up to eleven processors for one group of test problems, and more than 60% efficiency can be obtained for relatively smaller problems using up to five processors for another group of problems.  相似文献   
16.
Non-exponential electron transfer kinetics in complex systems are often analyzed in terms of a quenched, static disorder model. In this work we present an alternative analysis in terms of a simple dynamic disorder model where the solvent is characterized by highly non-exponential dynamics. We consider both low and high barrier reactions. For the former, the main result is a simple analytical expression for the survival probability of the reactant. In this case, electron transfer, in the long time, is controlled by the solvent polarization relaxation—in agreement with the analyses of Rips and Jortner and of Nadler and Marcus. The short time dynamics is also non-exponential, but for different reasons. The high barrier reactions, on the other hand, show an interesting dynamic dependence on the electronic coupling element,V el.  相似文献   
17.
In this article we present a new, general but simple, microscopic expression for time-dependent solvation energy of an ion. This expression is surprisingly similar to the expression for the time-dependent dielectric friction on a moving ion. We show that both the Chandra-Bagchi and the Fried-Mukamel formulations of solvation dynamics can be easily derived from this expression. This expression leads to an almost perfect agreement of the theory with all the available computer simulation results. Second, we show here for the first time that the mobility of a light solute ion can significantly accelerate its own solvation, specially in the underdamped limit. The latter result is also in excellent agreement with the computer simulations.  相似文献   
18.
It is demonstrated that a generalized version of the orthogonal gradient method of orbital optimization may sometimes encounter a specific divergence problem which may be termed intrinsic to the first order method. Instead of switching over to a more sophisticated second order method one can cure the divergence problem at the first order level itself by suitably tailoring the MC-SCF operator or the MC-SCF energy matrix. Results of complete geometry optimization of propynal inl,3nπ* and3ππ* states (pathological cases) are reported to demonstrate the usefulness of the method at an INDO-MCSCF level of approximation. The results of structure calculations are further rationalized from generalized quantum chemical bond order indices.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号