首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   28篇
  国内免费   3篇
化学   588篇
晶体学   6篇
力学   15篇
数学   149篇
物理学   183篇
  2023年   10篇
  2022年   8篇
  2021年   12篇
  2020年   14篇
  2019年   12篇
  2018年   11篇
  2017年   10篇
  2016年   21篇
  2015年   16篇
  2014年   13篇
  2013年   41篇
  2012年   40篇
  2011年   52篇
  2010年   27篇
  2009年   26篇
  2008年   58篇
  2007年   44篇
  2006年   44篇
  2005年   43篇
  2004年   39篇
  2003年   27篇
  2002年   24篇
  2001年   17篇
  2000年   20篇
  1999年   18篇
  1997年   11篇
  1996年   9篇
  1995年   12篇
  1994年   17篇
  1993年   11篇
  1992年   10篇
  1991年   11篇
  1990年   13篇
  1989年   11篇
  1988年   8篇
  1987年   11篇
  1986年   9篇
  1985年   10篇
  1984年   11篇
  1983年   8篇
  1982年   9篇
  1981年   12篇
  1980年   9篇
  1978年   10篇
  1977年   13篇
  1976年   9篇
  1975年   6篇
  1974年   15篇
  1973年   6篇
  1966年   8篇
排序方式: 共有941条查询结果,搜索用时 68 毫秒
161.
Treatment of the iron bis(dinitrogen) complex, (iPrPDI)Fe(N2)2 (iPrPDI = (2,6-iPr2C6H3N=CMe)2C5H3N), with a series of aryl azides resulted in loss of 3 equiv of N2 and formation of the corresponding four-coordinate iron imide compounds, (iPrPDI)Fe(NAr). These complexes, two of which (Ar = 2,6-iPr2-C6H3 and 2,4,6-Me3-C6H2) have been characterized by X-ray diffraction, are significantly distorted from planarity. The metrical parameters in combination with M?ssbauer spectroscopic and SQUID magnetic data suggest an intermediate spin iron(III) center antiferromagnetically coupled to a ligand-centered radical. Nitrene group transfer has been accomplished by addition of 1 atm of CO, yielding aryl isocyanates, ArNCO, and (iPrPDI)Fe(CO)2. Hydrogenation of the more sterically hindered members of the series furnished free aniline and the previously reported iron dihydrogen complex. Catalytic aryl azide hydrogenation has also been achieved, and the observed relative rates are consistent with N-H bond formation as the rate-determining step in aniline formation.  相似文献   
162.
A series of mononuclear square-based pyramidal complexes of iron containing two 1,2-diaryl-ethylene-1,2-dithiolate ligands in various oxidation levels has been synthesized. The reaction of the dinuclear species [Fe(III)2(1L*)2(1L)2]0, where (1L)2- is the closed shell di-(4-tert-butylphenyl)-1,2-ethylenedithiolate dianion and (1L*)1- is its one-electron-oxidized pi-radical monoanion, with [N(n-Bu)4]CN in toluene yields dark green crystals of mononuclear [N(n-Bu)4][Fe(II)(1L*)2(CN)] (1). The oxidation of 1 with ferrocenium hexafluorophosphate yields blue [Fe(III)(1L*)2(CN)] (1ox), and analogously, a reduction with [Cp2Co] yields [Cp2Co][N(n-Bu)4][Fe(II)(1L*)(1L)(CN)] (1red); oxidation of the neutral dimer with iodine gives [Fe(III)(1L*)2I] (2). The dimer reacts with the phosphite P(OCH3)3 to yield [Fe(II)(1L*)2{P(OCH3)3}] (3), and [Fe(III)2(3L*)2(3L)2] reacts with P(OC6H5)3 to give [Fe(II)(3L*)2{P(OC6H5)3}] (4), where (3L)2- represents 1,2-diphenyl-1,2-ethylenedithiolate(2-). Both 3 and 4 were electrochemically one-electron oxidized to the monocations 3ox and 4ox and reduced to the monoanions 3red and 4red. The structures of 1 and 4 have been determined by X-ray crystallography. All compounds have been studied by magnetic susceptibility measurements, X-band EPR, UV-vis, IR, and M?ssbauer spectroscopies. The following five-coordinate chromophores have been identified: (a) [Fe(III)(L*)2X]n, X = CN-, I- (n = 0) (1ox, 2); X = P(OR)3 (n = 1+) )3ox, 4ox) with St = 1/2, SFe = 3/2; (b) [Fe(II)(L*)2X]n, X = CN-, (n = 1-) (1); X = P(OR)3 (n = 0) (3, 4) with St = SFe = 0; (c) [Fe(II)(L*)(L)X]n <--> [Fe(II)(L)(L*)X]n, X = CN- (n = 2-) (1red); X = P(OR)3 (n = 1-) (3red, 4red) with St = 1/2, SFe = 0 (or 1). Complex 1ox displays spin crossover behavior: St = 1/2 <--> St = 3/2 with intrinsic spin-state change SFe = 3/2 <--> SFe = 5/2. The electronic structures of 1 and 1(ox) have been established by density functional theoretical calculations: [Fe(II)(1L*)2(CN)]1- (SFe = 0, St = 0) and [Fe(III)(1L*)2(CN)]0 (SFe = 3/2, St = 1/2).  相似文献   
163.
Proteins are important in bacterial adhesion, but interactions at molecular-scales between proteins and specific functional groups are not well understood. The adhesion forces between four proteins [bovine serum albumin (BSA), protein A, lysozyme, and poly-d-lysine] and COOH, NH2 and OH-functionalized (latex) colloids were examined using colloid probe atomic force microscopy (AFM) as the function of colloid residence time (T) and solution ionic strength (IS). For three of the proteins, OH-functionalized colloids produced higher adhesion forces to proteins (2.6-30.5 nN; IS=1 mM, T=10s) than COOH- and NH2-functionalized colloids (1.6-6.8 nN). However, protein A produced the largest adhesion force (8.1+/-1.0 nN, T=10 s) with the COOH-functionalized colloid, demonstrating the importance of specific and unanticipated protein-functional group interactions. The NH2-functionalized colloid typically produced the lowest adhesion forces with all proteins, likely due to repulsive electrostatic forces and weak bonds for NH2-NH2 interactions. The adhesion force (F) between functionalized colloids and proteins consistently increased with residence time (T), and data was well fitted by F=ATn. The constant value of n=0.21+/-0.07 for all combinations of proteins and functionalized colloids indicated that water exclusion and protein rearrangement were the primary factors affecting adhesion over time. Adhesion forces decreased inversely with IS for all functional groups interacting with surface proteins, consistent with previous findings. These results demonstrate the importance of specific molecular-scale interactions between functional groups and proteins that will help us to better understand factors colloidal adhesion to surfaces.  相似文献   
164.
As part of an ongoing effort to deliberate synthesis of polynuclear heterometal complexes, we are exploring synthetic routes to high-nuclearity complexes using "metal oximates" as building blocks. Series of tetranuclear linear complex ions of the general types M(A)M(B)M(B)M(A), where M(A) is a trivalent or tetravalent metal ion and M(B) is a divalent metal ion, e.g., Mn(II), have been synthesized by using the dimetal(II) anionic cores, [(M(II)(B))(2)(dfmp)(3)](5)(-) as a bridging ligand for the terminal LM(A) fragments where H(3)dfmp is a dinucleating phenol-oxime ligand, 2,6-diformyl-4-methylphenol oxime, and L denotes a facially coordinating cyclic tridentate amine, 1,4,7-trimethyl-1,4,7-triazacyclononane. The following combinations are reported here, B(III)Mn(II)Mn(II)B(III) (1), Mn(III)Mn(II)Mn(II)Mn(III) (2), Mn(IV)Mn(II)Mn(II)Mn(IV) (3), Fe(III)Mn(II)Mn(II)Fe(III) (4), and Cr(III)Mn(II)Mn(II)Cr(III) (5). The compounds have been characterized spectroscopically and by magnetic susceptibility measurements in the temperature range 2.0-290 K at different field strengths. Complexes 1-4 have also been structurally characterized by single-crystal X-ray diffraction techniques at 100 K. The magnetic behaviors of the compounds indicate weak antiferromagnetic coupling between the manganese(II) centers in the central trisphenoxo-bridged dimanganese(II) core, whereas the coupling between the terminal M(A) and its neighboring Mn(II) center varies and is weak ferromagnetic or antiferromagnetic. The relative interaction intensity in such a series of complexes is discussed. Finally, a profound influence of the charge on the terminal metal ions on the strength of the exchange coupling in the central dimanganese(II) core has been observed and discussed in relation to the covalency of the metal-ligand bonding.  相似文献   
165.
The heterodinuclear complex [LCuIIVIVO] 1 was synthesized by using a new unsymmetric dinucleating ligand based on 1,8-naphthalenediol, whereas the homodinuclear CuIICuII complex 2 has a bridging beta-diketimineamid unit. Here we report on the synthesis, molecular structures, and magnetic properties of 1 and 2. In the solid state, both complexes dimerize to tetranuclear entities 1(2) and 2(2). The intradimer interaction in both complexes is ferromagnetic because of the orthogonality of the magnetic orbitals (J12 = +45.6 cm(-1) in 1 and +4.8 cm(-1) in 2). The interdimer interaction in 1 is also ferromagnetic, giving a St = 2 ground state.  相似文献   
166.
Microwave reaction of RuCl3 with 2,2'-bipyridinyl-4,4'-dicarboxylic acid diethyl ester (debpy) in ethylene glycol generated Ru(bpy)3(2+) instead of the expected Ru(debpy)3(2+). Gas chromatography-mass spectrometry analysis of the headspace revealed CO2, and Ru(bpy)3(2+) was recovered from the filtrate. Further experiments suggest that RuCl3 decarboxylates debpy during microwave synthesis.  相似文献   
167.
McFaul SM  Lin BK  Ma H 《Lab on a chip》2012,12(13):2369-2376
The separation of biological cells by filtration through microstructured constrictions is limited by unpredictable variations of the filter hydrodynamic resistance as cells accumulate in the microstructure. Applying a reverse flow to unclog the filter will undo the separation and reduce filter selectivity because of the reversibility of low-Reynolds number flow. We introduce a microfluidic structural ratchet mechanism to separate cells using oscillatory flow. Using model cells and microparticles, we confirmed the ability of this mechanism to sort and separate cells and particles based on size and deformability. We further demonstrate that the spatial distribution of cells after sorting is repeatable and that the separation process is irreversible. This mechanism can be applied generally to separate cells that differ based on size and deformability.  相似文献   
168.
In a classical 1986 paper by Erdös, Saks and Saós every graph of radius r has an induced path of order at least 2r ? 1. This result implies that the independence number of such graphs is at least r. In this paper, we use a result of S. Fajtlowicz about radius-critical graphs to characterize graphs where the independence number is equal to the radius, for all possible values of the radius except 2, 3, and 4. We briefly discuss these remaining cases as well.  相似文献   
169.
Polystyrene-block-poly(ethylene oxide) (PS-PEO) is an amphiphilic diblock copolymer that undergoes microphase separation when spread at the air/water interface, forming nanosized domains. In this study, we investigate the impact of PS by examining a series of PS-PEO samples containing constant PEO (~17,000 g·mol(-1)) and variable PS (from 3600 to 200,000 g·mol(-1)) through isothermal characterization and atomic force microscopy (AFM). The polymers separated into two categories: predominantly hydrophobic and predominantly hydrophilic with a weight percent of PEO of ~20% providing the boundary between the two. AFM results indicated that predominantly hydrophilic PS-PEO forms dots while more hydrophobic samples yield a mixture of dots and spaghetti with continent-like structures appearing at ~7% PEO or less. These structures reflect a blend of polymer spreading, entanglement, and vitrification as the solvent evaporates. Changing the spreading concentration provides insight into this process with higher concentrations representing earlier kinetic stages and lower concentrations demonstrating later ones. Comparison of isothermal results and AFM analysis shows how polymer behavior at the air/water interface correlates with the observed nanostructures. Understanding the impact of polymer composition and spreading concentration is significant in leading to greater control over the nanostructures obtained through PS-PEO self-assembly and their eventual application as polymer templates.  相似文献   
170.
Several potentially tridentate pyridyl and phenolic Schiff bases (apRen and HhapRen, respectively) were derived from the condensation reactions of 2-acetylpyridine (ap) and 2'-hydroxyacetophenone (Hhap), respectively, with N-R-ethylenediamine (RNHCH(2)CH(2)NH(2), Ren; R = H, Me or Et) and complexed in situ with iron(II) or iron(III), as dictated by the nature of the ligand donor set, to generate the six-coordinate iron compounds [Fe(II)(apRen)(2)]X(2) (R = H, Me; X(-) = ClO(4)(-), BPh(4)(-), PF(6)(-)) and [Fe(III)(hapRen)(2)]X (R = Me, Et; X(-) = ClO(4)(-), BPh(4)(-)). Single-crystal X-ray analyses of [Fe(II)(apRen)(2)](ClO(4))(2) (R = H, Me) revealed a pseudo-octahedral geometry about the ferrous ion with the Fe(II)-N bond distances (1.896-2.041 ?) pointing to the (1)A(1) (d(π)(6)) ground state; the existence of this spin state was corroborated by magnetic susceptibility measurements and M?ssbauer spectroscopy. In contrast, the X-ray structure of the phenolate complex [Fe(III)(hapMen)(2)]ClO(4), determined at 100 K, demonstrated stabilization of the ferric state; the compression of the coordinate bonds at the metal center is in accord with the (2)T(2) (d(π)(5)) ground state. Magnetic susceptibility measurements along with EPR and M?ssbauer spectroscopic techniques have shown that the iron(III) complexes are spin-crossover (SCO) materials. The spin transition within the [Fe(III)N(4)O(2)](+) chromophore was modulated with alkyl substituents to afford two-step and one-step (6)A(1) ? (2)T(2) transformations in [Fe(III)(hapMen)(2)]ClO(4) and [Fe(III)(hapEen)(2)]ClO(4), respectively. Previously, none of the X-salRen- and X-sal(2)trien-based ferric spin-crossover compounds exhibited a stepwise transition. The optical spectra of the LS iron(II) and SCO iron(III) complexes display intense d(π) → p(π)* and p(π) → d(π) CT visible absorptions, respectively, which account for the spectacular color differences. All the complexes are redox-active; as expected, the one-electron oxidative process in the divalent compounds occurs at higher redox potentials than does the reverse process in the trivalent compounds. The cyclic voltammograms of the latter compounds reveal irreversible electrochemical generation of the phenoxyl radical. Finally, the H(2)salen-type quadridentate ketimine H(2)hapen complexed with an equivalent amount of iron(III) to afford the μ-oxo-monobridged dinuclear complex [{Fe(III)(hapen)}(2)(μ-O)] exhibiting a distorted square-pyramidal geometry at the metal centers and considerable antiferromagnetic coupling of spins (J ≈ -99 cm(-1)).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号