首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2642篇
  免费   102篇
  国内免费   6篇
化学   1660篇
晶体学   125篇
力学   85篇
数学   254篇
物理学   626篇
  2023年   19篇
  2022年   32篇
  2021年   50篇
  2020年   43篇
  2019年   49篇
  2018年   54篇
  2017年   46篇
  2016年   77篇
  2015年   78篇
  2014年   89篇
  2013年   233篇
  2012年   134篇
  2011年   135篇
  2010年   107篇
  2009年   104篇
  2008年   122篇
  2007年   114篇
  2006年   89篇
  2005年   92篇
  2004年   80篇
  2003年   67篇
  2002年   75篇
  2001年   34篇
  2000年   24篇
  1999年   27篇
  1998年   16篇
  1997年   22篇
  1996年   31篇
  1995年   27篇
  1994年   19篇
  1993年   30篇
  1992年   30篇
  1991年   32篇
  1990年   29篇
  1989年   37篇
  1988年   28篇
  1987年   24篇
  1986年   31篇
  1985年   28篇
  1984年   33篇
  1983年   25篇
  1982年   26篇
  1981年   30篇
  1980年   26篇
  1979年   25篇
  1978年   15篇
  1977年   32篇
  1976年   16篇
  1975年   21篇
  1974年   20篇
排序方式: 共有2750条查询结果,搜索用时 140 毫秒
951.
A new procedure was developed for reducing the reaction time and improving the yield of esterification reaction in solid phase synthesis of pseudopeptides containing an ester bond by utilizing microwave irradiation. We selected a pseudodipeptide (Fmoc-LysΨ[COO]Leu-NH2) and optimized the microwave-assisted esterification reaction in solid phase synthesis using Fmoc chemistry. For this, microwave-assisted esterification reactions with different reaction time, temperature, and solvents were performed using 1,3-diisopropylcarbodiimide (DIC) as the coupling reagent. We synthesized several pseudodipeptides containing an ester bond by using the optimized microwave irradiation method. The purity and yield of the pseudodipeptides synthesized in this way were better than those obtained without microwave irradiation. Furthermore, we applied this methodology for synthesizing pseudopeptides (6- and 12-mer) corresponding to the α helical peptide. The microwave-assisted esterification reaction afforded the target pseudopeptides with high yield (∼80%) and purity within 12 min, whereas the reaction without microwave irradiation afforded the target compound with poor yield (∼45%) and low purity.  相似文献   
952.
Palladium-catalyzed aminocarbonylations of various (hetero)aryl halides with allylamine using Mo(CO)6 as a solid, in situ CO source, were explored. Microwave-enhanced conditions proved to be highly useful in promoting the conversions in a mere 10-20 min with various (hetero)aryl iodides, bromides and chlorides. The scale-up of a microwave-enhanced aminocarbonylation to 25 mmol scale was performed successfully.  相似文献   
953.
The fatty acid profile study was undertaken to study the effect of impeller tip speed-associated shear stress and dissolved oxygen saturation (DO) on the fatty acid composition variation and on total lipid content of the cells. The study was undertaken in a 5-l stirred tank bioreactor using Mucor sp. RRL001. To study the interaction of parameters and their effects, a central composite design was used. The fatty acid profiling during the course of study suggested that oleic acid and palmitic acid were two major components with their composition varying between 34-47% and 29-39.1%, respectively, of the total lipid content. The GLA content varied between 3% and 9% of the total lipid. The lipid profile study also revealed the presence of a minor amount of fatty acids of chain length C:12, C:20, C:22, and C:24. The modeling of lipid accumulation suggested that it follows a quadratic model with both impeller tip speed (p = 0.0166) and dissolved oxygen concentration (p = 0.0098) following the quadratic order of effect. The fermenter run based on the optimum production zone in response surface plot resulted in the maximum 4.8 g l(-1) lipid compared with the model-predicted value of 4.49 g l(-1). The present study suggests that dissolved oxygen saturation is a more significant contributor to total lipid accumulation. However, the study also suggests that the fatty acid profile of fungal lipid is not directly associated with the shear stress or oxygen availability in Mucor sp. RRL001.  相似文献   
954.
The mechanistic importance of HMPA and proton donors (methanol, 2-methyl-2-propanol, and 2,2,2-trifluoroethanol) on SmI2-initiated 5-exo-trig ketyl-olefin cyclizations has been examined using stopped-flow spectrophotometric studies. In the presence of HMPA, the rate order of proton donors was zero and product studies showed that they had no impact on the diastereoselectivity of the reaction. Conversely, reactions were first-order in HMPA, and the additive displayed saturation kinetics at high concentrations. These results were consistent with HMPA being involved in a rate-limiting step before cyclization, where coordination of the intermediate ketyl to the sterically congested Sm(III)HMPA both stabilizes the intermediate and inhibits cyclization. Liberation of the contact ion pair through displacement by an equivalent of HMPA provides a solvent-separated ion pair releasing the steric constraint to ketyl-olefin cyclization. The mechanism derived from rate studies shows that HMPA is important not only in increasing the reduction potential of Sm(II) but also in enhancing the inherent reactivity of the radical anion intermediate formed after electron transfer through conversion of a sterically congested contact ion pair to a solvent-separated ion pair. The mechanistic complexity of the SmI2-HMPA-initiated ketyl-olefin cyclization is driven by the high affinity of HMPA for Sm(III), and these results suggest that simple empirical models describing the role of HMPA in more complex systems are likely to be fraught with a high degree of uncertainty.  相似文献   
955.
Dielectrophoretic behaviors and assembly of a binary suspension in aqueous media are examined in the presence of nonuniform alternating current (AC) electric field. A peculiar low-frequency threshold and dielectrophoresis (DEP) crossover frequency determine the applicable frequency window for binary assembly under positive DEP, which can be effectively tuned by medium conductivity and particle size, suggesting that the dynamic double-layer effect is responsible for the interfacial polarization of micrometer to submicrometer-sized particles in aqueous suspensions. Strong effects of AC-field frequency, medium conductivity, and size ratio on binary assembly morphology have been observed. A frequency-medium conductivity phase diagram is obtained to illustrate the morphological transition of assembled colloidal aggregates from segregated, ordered assemblies to inverted segregation with the appearance of amorphous phases upon increasing frequency and/or medium conductivity, which is a direct consequence of the competition between DEP and hydrodynamic mobility. Significantly, our results demonstrate a rapid method to form hybrid nanostructured materials.  相似文献   
956.
An electrochemical creatinine sensor based on a molecularly imprinted polymer (MIP)‐modified sol‐gel film on graphite electrode was developed. The surface coating of MIP over sol‐gel was advantageous to obtain a porous film with outwardly exposed MIP cavities for unhindered selective rebinding of creatinine from aqueous and biological samples. A fast differential pulse, cathodic stripping voltammetric response of creatinine can be obtained after being preanodized the sensor in neutral medium containing appropriate amount of creatinine at +1.8 V versus SCE for 120 s. A linear response over creatinine concentration in the range of 1.23 to 100 μg mL?1 was exhibited with a detection limit of 0.37 μg mL?1 (S/N=3).  相似文献   
957.
A new multipolar fluorophore based on a multi-substituted olefin skeleton that possesses strong three-photon absorption and optical-limiting properties in the femtosecond regime has been designed and synthesized; this archetype suggests a new strategy to further optimize molecular structures toward enhanced nonlinear absorptivities based on known materials.  相似文献   
958.
2,5-Diamino-3,6-dichloro-1,4-benzoquinone has been synthesized by modifying the procedure reported in literature. Its IR spectrum has been recorded in the solid phase in the range 4000-400cm(-1). Ab initio calculations have been performed using Gaussian '03 program to compute optimized geometry, harmonic vibrational frequencies along with intensities in IR and Raman spectra and atomic charges at RHF/6-31+G*, B3LYP/6-31+G* and B3LYP/6-311++G** levels. To make vibrational analysis Gaussian View software was used. The optimized molecular structure is found to possess C2h point group symmetry. The observed IR frequencies have been assigned to different modes taking C2h molecular symmetry with the help of pictorial view of normal modes. From the magnitude of the observed frequencies corresponding to the NH2 stretching motions an indication of H-bonding is noticed. From geometrical parameters of the molecule it appears that two parallel sets of conjugated strands are formed in this molecule providing a route to conduct charges. The N-H bonds facing towards chlorine atoms are found to be shorter than those facing towards oxygen atoms indicating the presence of H-bonding between hydrogen atom of an NH2 group and carbonyl (quinoid) oxygen atom.  相似文献   
959.
In this article, we present a systematic study on mono-methylindoles to investigate the electronic origin of the threefold symmetric component (V 3) of the methyl torsional potential barrier in the ground electronic state (S 0). The structures and the torsional potential parameters of these molecules were evaluated from ab initio calculation using Hartree-Fock (HF), second order Mollar Plesset perturbation (MP2) and B3LYP density functional level of theories and Gaussian type basis set 6-31G(d, p). Natural bond orbital (NBO) analysis of these molecules were carried out using B3LYP/6-31G(d, p) level of calculation to understand the formation of the threefold V 3 term arising from the changes of various non-covalent interactions during methyl rotation. Our analysis reveals that the contributions from π orbitals play a dominant role in the barrier height determination in this class of molecules. The threefold term in the barrier arises purely from the interactions non-local to the methyl group in case when the methyl group has two single bonds vicinal to it. On the other hand, it is the local interaction that determines the potential energy barrier when the methyl group has one single bond and one double bond vicinal to it. However, in all these cases, the magnitude of the energy barrier depends on the resonance structure formation in the benzene ring frame upon rotation of the methyl group and, therefore, the energetics of the barrier cannot be understood without considering the molecular flexing during methyl rotation.  相似文献   
960.
Enones are widely utilized linchpin functional groups in chemical synthesis and molecular biology. We herein report the direct conversion of boronic esters into enones using commercially available methoxyallene as a three-carbon building block. Following boronate complex formation by reaction of the boronic ester with lithiated-methoxyallene, protonation triggers a stereospecific 1,2-migration before oxidation generates the enone. The protocol shows broad substrate scope and complete enantiospecificity is observed with chiral migrating groups. In addition, various electrophiles could be used to induce 1,2-migration and give a much broader range of α-functionalized enones. Finally, the methodology was applied to a 14-step synthesis of the enone-containing polyketide 10-deoxymethynolide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号