首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   5篇
化学   113篇
数学   8篇
物理学   62篇
  2023年   1篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   8篇
  2012年   15篇
  2011年   10篇
  2010年   1篇
  2009年   7篇
  2008年   19篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   19篇
  2003年   10篇
  2002年   11篇
  2001年   10篇
  2000年   6篇
  1998年   3篇
  1996年   4篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
1.
2.
Pratt MR  Bertozzi CR 《Organic letters》2004,6(14):2345-2348
[structure: see text] Divergent syntheses of sulfated sialyl Lewis X oligosaccharides corresponding to the core 1 and core 6 branches of the L-selectin ligand are reported. These synthetic targets incorporate a selectively protected serine residue at the reducing terminus, providing a functional handle for further conjugation.  相似文献   
3.
Selective chemical reactions that are orthogonal to the diverse functionality of biological systems have become important tools in the field of chemical biology. Two notable examples are the Staudinger ligation of azides and phosphines and the Cu(I)-catalyzed [3 + 2] cycloaddition of azides and alkynes ("click chemistry"). The Staudinger ligation has sufficient biocompatibility for performance in living animals but suffers from phosphine oxidation and synthetic challenges. Click chemistry obviates the requirement of phosphines, but the Cu(I) catalyst is toxic to cells, thereby precluding in vivo applications. Here we present a strain-promoted [3 + 2] cycloaddition between cyclooctynes and azides that proceeds under physiological conditions without the need for a catalyst. The utility of the reaction was demonstrated by selective modification of biomolecules in vitro and on living cells, with no apparent toxicity.  相似文献   
4.
[reaction: see text] Here we report a novel modification of our previously reported "Staudinger ligation" that generates an amide bond from an azide and a specifically functionalized phosphine. This method for the selective formation of an amide bond, which does not require the orthogonal protection of distal functional groups, should find general utility in synthetic and biological chemistry.  相似文献   
5.
The synthesis of a 93-residue chemokine, lymphotactin, containing eight sites of O-linked glycosylation, was achieved using the technique of native chemical ligation. A single GalNAc residue was incorporated at each glycosylation site using standard Fmoc-chemistry to achieve the first total synthesis of a mucin-type glycoprotein. Using this approach quantities of homogeneous material were obtained for structural and functional analysis.  相似文献   
6.
We report here a strategy for the synthesis of N-linked glycopeptide analogues that replace the glycosidic linkages extending from the core pentasaccharide with thioethers amenable to construction by chemoselective ligation. The key building block, a pentasaccharide-Asn analogue containing two thiol residues, was incorporated into CD52 by 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase peptide synthesis. An undecasaccharide mimetic was then readily generated by alkylation of this glycopeptide with an N-bromoacetamido trisaccharide. The rapid assembly of a complex type N-linked glycopeptide mimetic was accomplished using this technique.  相似文献   
7.
The biological study of O-linked glycosylation is particularly problematic, as chemical tools to control this modification are lacking. An inhibitor of the UDP-GlcNAc 4-epimerase that synthesizes UDP-GalNAc, the donor initiating O-linked glycosylation, would be a powerful reagent for reversibly inhibiting O-linked glycosylation. We synthesized a 1338 member library of uridine analogs directed to the epimerase by virtue of substrate mimicry. Screening of the library identified an inhibitor with a K(i) value of 11 microM. Tests against related enzymes confirmed the compound's specificity for the UDP-GlcNAc 4-epimerase. Inhibitors of a key step of O-linked glycan biosynthesis can be discovered from a directed library screen. Progeny thereof may be powerful tools for controlling O-linked glycosylation in cells.  相似文献   
8.
Fusion cross-sections for the 7Li + 12C reaction have been measured at energies above the Coulomb barrier by the direct detection of evaporation residues. The heavy evaporation residues with energies below 3 MeV could not be separated out from the α-particles in the spectrum and hence their contribution was estimated using statistical model calculations. The present work indicates that suppression of fusion cross-sections due to the breakup of 7Li may not be significant for 7Li + 12C reaction at energies around the barrier.  相似文献   
9.
10.
Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified proteins in the outer leaflet of the plasma membrane. GPI-anchored proteins play vital roles in signal transduction, the vertebrate immune response, and the pathobiology of trypanosomal parasites. While many GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. We synthesized a series of GPI-protein analogues bearing modified anchor structures that were designed to dissect the contribution of various glycan components to the GPI-protein's membrane behavior. These anchor analogues were similar in length to native GPI anchors and included mimics of the native structure's three domains. A combination of expressed protein ligation and native chemical ligation was used to attach these analogues to the green fluorescent protein (GFP). These modified GFPs were incorporated in supported lipid bilayers, and their mobilities were analyzed using fluorescence correlation spectroscopy. The data from these experiments suggest that the GPI anchor is more than a simple membrane-anchoring device; it also may prevent transient interactions between the attached protein and the underlying lipid bilayer, thereby permitting rapid diffusion in the bilayer. The ability to generate chemically defined analogues of GPI-anchored proteins is an important step toward elucidating the molecular functions of this interesting post-translational modification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号