首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   0篇
化学   85篇
力学   1篇
数学   3篇
物理学   3篇
  2018年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   2篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   10篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有92条查询结果,搜索用时 422 毫秒
31.
2,3,6,7,10,11-Tris(N,N′-diethylethylenediamino)triphenylene (HET) has been synthesized by a route involving hexabromination of triphenylene, reaction with ethylenediamine, hexa-acetylation, and reduction with diborane. Cyclic voltammetry shows that HET can be reversibly oxidized to a mono-cation HET+, a dication HET2+, a trication HET3+, and a tetraction HET4+. Beyond that the oxidation is irreversible. The dication HET2+ is a ground-state triplet species. This fact, and the low oxidation potential required to produce it, make it of interest in testing proposed mechanism for preparing organic ferromagnetic materials.  相似文献   
32.
Zusammenfassung Der Gehalt von Polyoxymethylen an eingebautem 1,3-Dioxolan kann durch quantitative Kernresonanz-Spektroskopie der äquilibrierten Lösung des Polyoxymethylens in Ameisensäure bestimmt werden. Als Maß für das 1,3-Dioxolan dient das Integral des Signals des Äthylenglykoldiformiats, als Maß für den Trioxananteil das Integral der Signale der Hauptumsetzungsprodukte des Formaldehyds mit sich selbst und mit Ameisensäure. Der Erfassungsbereich reicht von 0,1–22%. Der Fehler der Methode liegt im Bereich von 0,1–1% bei 0,1% abs., von 1–3% bei 0,2% abs., darüber ist er < 5% rel.
Dermination of 1.3-Dioxolane in polyoxymethylenes by nuclear magnetic resonance spectroscopy
The contents of 1.3-dioxolane enclosed in polyoxymethylenes can be determined quantitatively by NMR spectroscopy of the equilibrated solution of polyoxymethylene in formic acid. As a measure for the 1.3-dioxolane content the integral of the signal of ethyleneglycol diformiate is used, and as a measure for the trioxane content the integral of the signal of the main reaction products of formaldehyde with itself and with formic acid. The range of identification extends from 0.1–22%. The error of the method amounts: in the range from 0.1–1% to about 0.1% abs., from 1–3% to about 0.2% abs., over 3% to < 5% rel.
  相似文献   
33.
[structure: see text] C-Nucleosidation with cyclic iminium salts occurring under mild reaction conditions and affording C-nucleosides that are isosteric with N-nucleosides of natural purines is shown to be a consistent property of the entire family of 2,6-(oxo or amino)-disubstituted 5,8-diaza-7,9-dicarba-purines.  相似文献   
34.
35.
Methanogenic archaea utilize a specific pathway in their metabolism, converting C1 substrates (i.e., CO2) or acetate to methane and thereby providing energy for the cell. Methyl-coenzyme M reductase (MCR) catalyzes the key step in the process, namely methyl-coenzyme M (CH3-S-CoM) plus coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. The active site of MCR contains the nickel porphinoid F430. We report here on the coordinated ligands of the two paramagnetic MCR red2 states, induced when HS-CoM (a reversible competitive inhibitor) and the second substrate HS-CoB or its analogue CH3-S-CoB are added to the enzyme in the active MCR red1 state (Ni(I)F430). Continuous wave and pulse EPR spectroscopy are used to show that the MCR red2a state exhibits a very large proton hyperfine interaction with principal values A((1)H) = [-43,-42,-5] MHz and thus represents formally a Ni(III)F430 hydride complex formed by oxidative addition to Ni(I). In view of the known ability of nickel hydrides to activate methane, and the growing body of evidence for the involvement of MCR in "reverse" methanogenesis (anaerobic oxidation of methane), we believe that the nickel hydride complex reported here could play a key role in helping to understand both the mechanism of "reverse" and "forward" methanogenesis.  相似文献   
36.
Microbial mats collected at cold methane seeps in the Black Sea carry out anaerobic oxidation of methane (AOM) to carbon dioxide using sulfate as the electron acceptor. These mats, which predominantly consist of sulfate-reducing bacteria and archaea of the ANME-1 and ANME-2 type, contain large amounts of proteins very similar to methyl-coenzyme M reductase from methanogenic archaea. Mass spectrometry of mat samples revealed the presence of two nickel-containing cofactors in comparable amounts, one with the same mass as coenzyme F430 from methanogens (m/z = 905) and one with a mass that is 46 Da higher (m/z = 951). The two cofactors were isolated and purified, and their constitution and absolute configuration were determined. The cofactor with m/z = 905 was proven to be identical to coenzyme F430 from methanogens. For the m/z = 951 species, high resolution ICP-MS pointed to F430 + CH2S as the molecular formula, and LA-ICP-SF MS finally confirmed the presence of one sulfur atom per nickel. Esterification gave two stereoisomeric pentamethyl esters with m/z = 1021, which could be purified by reverse phase HPLC and were subjected to comprehensive NMR analysis, allowing determination of their constitution and configuration as (17(2)S)-17(2)-methylthio-F430 pentamethyl ester and (17(2)R)-17(2)-methylthio-F430 pentamethyl ester. The corresponding diastereoisomeric pentaacids could also be separated by HPLC and were correlated to the esters via mild hydrolysis of the latter. Equilibration of the pentaacids under acid catalysis showed that the (17(2)S) isomer is the naturally occurring albeit thermodynamically less stable one. The more stable (17(2)R) isomer (80% at equilibrium) is an isolation artifact generated under the acidic conditions necessary for the isolation of the cofactors from the calcium carbonate-encrusted mats.  相似文献   
37.
A remote 4J(F,H) coupling (F? C(α)? C(O)? N? H) of up to 4.2 Hz in α‐fluoro amides with antiperiplanar arrangement of the C? F and the C?O bonds (dihedral angle F? C? C?O ca. 180°) confirms that previous NMR determinations, using the XPLOR‐NIH procedure, of the secondary structures of β‐peptides containing β3hAla(αF) and β3hAla(αF2) residues were correct. In contrast, molecular‐dynamics (MD) simulations, using the GROMOS program with the 45A3 force field, led to an incorrect conclusion about the relative stability of secondary structures of these β‐peptides. The problems encountered in NMR analyses and computations of the structures of backbone‐F‐substituted peptides are briefly discussed.  相似文献   
38.
Qualitative conformational analysis of the entirety of conceivable hexo- and pentopyranosyl oligonucleotide systems derived from the diastereoisomeric aldohexoses (CH2O)6 and aldopentoses (CH2O)5 predicts the existence of a variety of pairing systems which have not been experimentally investigated so far. In particular, the analysis foresees the existence of a ribopyranosyl isomer of RNA (‘p-RNA’), containing the phosphodiester linkage between the positions C(4′) and C(2′) of neighboring ribopyranosyl units. Double strands of p-RNA oligonucleotides are expected to have a linear structure and to show purine-pyrimidine and purine-purine (Watson-Crick) pairing comparable in strength to that observed in homo-DNA. Experimentally, synthetic β-D -ribopyranosyl (4′→2′)-oligonucleotides derived from adenine and uracil confirm this prognosis: adenine-uracil pairing in p-RNA duplexes is stronger than in the corresponding RNA duplexes. Importantly, adenine in p-Ribo(A8) does not show (reverse-Hoogsteen) self-pairing, in sharp contrast to its behavior in the homo-DNA series. The sheer existence of strong and selective pairing in a system that is constitutionally isomeric to RNA and can be predicted to have a linear structure has implications for the problem of RNA's origin. In this context, a comprehensive experimental study of the pairing properties of p-RNA, of its potential for constitutional assembly, self-replication, and intra-duplex isomerization to RNA seems mandatory.  相似文献   
39.
Three double-decker cyclophane receptors, (±)- 2 , (±)- 3 , and (±)- 4 with 11–13-Å deep hydrophobic cavities were prepared and their steroid-binding properties investigated in aqueous and methanolic solutions. Pd°-Catalyzed cross-coupling reactions were key steps in the construction of these novel macrotricyclic structures. In the synthesis of D2-symmetrical (±)- 2 , the double-decker precursor (±)- 7 was obtained in 14% yield by fourfold Stille coupling of equimolar amounts of bis(tributylstannyl)acetylene with dibromocyclophane 5 (Scheme 1). For the preparation of the macrotricyclic precursor (±)- 15 of D2-symmetrical (±)- 3 , diiodocylophane 12 was dialkynylated with Me3SiC?CH to give 13 using the Sonogashira cross-coupling reaction; subsequent alkyne deprotection yielded the diethynylated cyclophane 14 , which was transformed in 42% yield into (±)- 15 by Glaser-Hay macrocyclization (Scheme 2). The synthesis of the C2-symmetrical conical receptor (±)- 4 was achieved via the macrotricyclic precursor (±)- 25 , which was prepared in 20% yield by the Hiyama cross-coupling reaction between the diiodo[6.1.6.1]paracyclophane 19 and the larger, dialkynylated cyclophane 17 (Scheme 4). Solid cholesterol was efficiently dissolved in water through complexation by (±)- 2 and (±)- 3 , and the association constants of the formed 1:1 inclusion complexes were determined by solid-liquid extraction as Ka = 1.1 × 106 and 1.5 × 105 l mol?1, respectively (295 K) (Table 1). The steroid-binding properties of the three receptors were analyzed in detail by 1H-NMR binding titrations in CD3OD. Observed steroid-binding selectivities between the two structurally closely related cylindrical receptors (±)- 2 and (±)- 3 (Table 2) were explained by differences in cavity width and depth, which were revealed by computer modeling (Fig. 4). Receptor (±)- 2 , with two ethynediyl tethers linking the two cyclophanes, possesses a shallower cavity and, therefore, is specific for flatter steroids with a C(5)?C(6) bond, such as cholesterol. In contrast, receptor (±)- 3 , constructed with longer buta-1,3-diynediyl linkers, has a deeper and wider hydrophobic cavity and prefers fully saturated steroids with an aliphatic side chain, such as 5α-cholestane (Fig. 7). In the 1:1 inclusion complexes formed by the conical receptor (±)- 4 (Table 3), testosterone or progesterone penetrate the binding site from the wider cavity side, and their flat A ring becomes incorporated into the narrower [6.1.6.1]paracyclophane moiety. In contrast, cholesterol penetrates (±)- 4 with its hydrophobic side chain from the wider rim of the binding side. This way, the side chain is included into the narrower cavity section shaped by the smaller [6.1.6.1]paracyclophane, While the A ring protrudes with the OH group at C(3) into the solvent on the wider cavity side (Fig. 8). The molecular-recognition studies with the synthetic receptors (±)- 2 , (±)- 3 , and (±)- 4 complement the X-ray investigations on biological steroid complexes in enhancing the understanding of the principles governing selective molecular recognition of steroids.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号