首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3781篇
  免费   137篇
  国内免费   19篇
化学   2846篇
晶体学   10篇
力学   71篇
数学   536篇
物理学   474篇
  2021年   36篇
  2020年   43篇
  2019年   50篇
  2018年   32篇
  2017年   23篇
  2016年   80篇
  2015年   104篇
  2014年   78篇
  2013年   140篇
  2012年   190篇
  2011年   231篇
  2010年   161篇
  2009年   118篇
  2008年   216篇
  2007年   206篇
  2006年   204篇
  2005年   200篇
  2004年   136篇
  2003年   114篇
  2002年   115篇
  2001年   63篇
  2000年   73篇
  1999年   67篇
  1998年   60篇
  1997年   68篇
  1996年   61篇
  1995年   58篇
  1994年   53篇
  1993年   65篇
  1992年   57篇
  1991年   28篇
  1990年   39篇
  1989年   30篇
  1988年   34篇
  1987年   39篇
  1986年   33篇
  1985年   61篇
  1984年   24篇
  1983年   30篇
  1982年   48篇
  1980年   39篇
  1978年   27篇
  1977年   39篇
  1976年   18篇
  1974年   18篇
  1973年   20篇
  1972年   19篇
  1971年   19篇
  1969年   21篇
  1967年   17篇
排序方式: 共有3937条查询结果,搜索用时 15 毫秒
131.
A series of alkaline uranyl carbonates, M[UO2(CO3)3nH2O (M=Mg2, Ca2, Sr2, Ba2, Na2Ca, and CaMg) was synthesized and characterized by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after nitric acid digestion, X-ray powder diffraction (XRD), and thermal analysis (TGA/DTA). The molecular structure of these compounds was characterized by extended X-ray absorption fine-structure (EXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). Crystalline Ba2[UO2(CO3)3]·6H2O was obtained for the first time. The EXAFS analysis showed that this compound consists of (UO2)(CO3)3 clusters similar to the other alkaline earth uranyl carbonates. The average U-Ba distance is 3.90±0.02 Å.Fluorescence wavelengths and life times were measured using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The U-O bond distances determined by EXAFS, TRLFS, XPS, and Raman spectroscopy agree within the experimental uncertainties. The spectroscopic signatures observed could be useful for identifying uranyl carbonate species adsorbed on mineral surfaces.  相似文献   
132.
The conformational analysis of naturally occurring cytostatic cyclic heptapeptides axinastatin 2, 3, and 4 was carried out by two-dimensional NMR spectroscopy in combination with distance-geometry (DG) and molecular-dynamics (MD) calculations in explicit solvents. The synthesized secondary metabolites were examined in (D6)DMSO. Axinastatin 2 was also investigated in CD3OH. In all structures, Pro2 is in the i + 1 position of a βI turn and Pro6 occupies the i + 2 position of a βVIa turn about the cis amide bond between residue 5 and Pro6. In all peptides, a bifurcated H-bond occurs between residue 4 CO and the amide protons of residue 1 and 7. For axinastatin 2 and 3, an Asn Ig turn was found about Asn1 and Pro2. We compared these structures with conformations of cyclic heptapeptides obtained by X-ray and NMR studies. A β-bulge motif with two β turns and one bifurcated H-bond is found as the dominating backbone conformation of cyclic all-L-heptapeptides. Axinastatin 2, 3, and 4 can be characterized by six trans and one cis amide bond resulting in a β/βVI(a)-turn motif, a conformation found for many cyclic heptapeptides. Detailed biological tests of the synthetic compounds in different human cancer cell lines indicates these axinastatins to be inactive or of low activity.  相似文献   
133.
Synthesis and Crystal Structure of [Se3N2Cl]+GaCl4? [Se3N2Cl]+GaCl4? has been prepared by the reduction of [Se2NCl2]+GaC14? with SbPh3 in CH2Cl2 solution, forming red crystals, which were characterized by an X-ray structure determination. Space group P21/n, Z = 4, 1640 observed unique reflections, R = 0.050. Lattice dimensions at ? 80 °C: a = 929.4(1), b= 1078.8(1), c = 1135.7(1) pm, β = 92.026(9)°. The cations from nearly planar Se3N2 five membered rings with Se? N bond lengths from 170 to 176pm and a Se? Se bond of 242.2 pm. One of the selenium atoms is bonded to the chlorine atom.  相似文献   
134.
The triplet state lifetimes of organic chromophores are crucial for fundamental photochemistry studies as well as applications as photosensitizers in photocatalysis, photovoltaics, photodynamic therapy and photon upconversion. It is noteworthy that the triplet state lifetime of a chromophore can vary significantly for its analogues, while the exact reason was rarely studied. Herein with a few exemplars of typical BODIPY derivatives, which show triplet lifetimes varying up to 110-fold (1.4–160 μs), we found that for these derivatives with short triplet state lifetimes (ca. 1–3 μs), the electron spin polarization (ESP) pattern of the time-resolved electron paramagnetic resonance (TREPR) spectra of the triplet state is inverted at a longer delay time after laser pulse excitation, as a consequence of a strong anisotropy in the decay rates of the zero-field state sublevel of the triplet state. For the derivatives showing longer triplet state lifetimes (>50 μs), no such ESP inversion was observed. The observed fast decay of one sublevel is responsible for the short triplet state lifetime; theoretical computations indicate that it is due to a strong coupling between the Tz sublevel and the ground state mediated by the spin–orbit interaction. Another finding is that the heavy atom effect on the shortening of the triplet state lifetime is more significant for the T1 states with lower energy. To the best of our knowledge, this is the first systematic study to rationalize the short triplet state lifetime of visible-light-harvesting organic chromophores. Our results are useful for fundamental photochemistry and the design of photosensitizers showing long-lived triplet states.

The electron spin polarization inversion and anisotropic decay of triplet substates explain the short triplet state lifetime of BODIPY derivatives.  相似文献   
135.
We propose a Cohen-type bond order analysis in terms of orthogonalized atomic basis functions which can be used to analyze NDO wave functions of large organic and metal–organic molecules. It is shown that for small molecules the results gained with this method are in excellent agreement with the same analysis based on ab initio STO -3G wavefunctions. For large planar aromatic systems these all-valence electron bond orders are found to be a consistent generalization of the π-bond order. A simple relation between these bond orders and the corresponding covalent bond energies is established. The method can be easily extended to study excited state multiconfiguration wave functions. We present calculations for C2H2, C2H4, C2H6, and Mn2(CO)10. The results indicate that the method can be used to discuss the photochemistry of organic and metal–organic compounds.  相似文献   
136.
Six unnatural nucleotides featuring fluorine-substituted phenyl nucleobase analogues have been synthesized, incorporated into DNA, and characterized in terms of the structure and replication properties of the self-pairs they form. Each unnatural self-pair is accommodated in B-form DNA without detectable structural perturbation, and all are thermally stable and selective to roughly the same degree. Furthermore, the efficiency of polymerase-mediated mispair synthesis is similar for each unnatural nucleotide in the template. In contrast, the efficiency of polymerase-mediated self-pair extension is highly dependent on the specific fluorine substitution pattern. The most promising unnatural base pair candidate of this series is the 3-fluorobenzene self-pair, which is replicated with reasonable efficiency and selectivity.  相似文献   
137.
Half-sandwich complexes of the type [(RCOCp)M(CO)(3)] with M = Re and (99(m))Tc were synthesized from [M(OH(2))(3)(CO)(3)](+) in water. The R group can be an organic residue or a receptor binding biomolecule with a spacer to cyclopentadienyl (Cp). This provides a general route to Cp complexes of technetium without the need for starting from [TcBr(CO)(5)]. The X-ray structure of [(C(6)H(5)CH(2)COC(5)H(4))Tc(CO)(3)] has been elucidated. The compound crystallizes in the monoclinic space group P2(1)/c with a = 16.1454(9), b = 7.6300(6), and c = 12.3922(7) A and beta = 107.792(6) degrees. We have chosen a serotonergic receptor ligand (WAY) as an example for the derivatization of Cp with a bioactive molecule. WAY is linked to Cp by an aliphatic chain of variable length. The half-sandwich complexes were prepared from water and organic solvents. The structure of [(WAY4-Cp)Re(CO)(3)] could be elucidated. The compound crystallizes in the monoclinic space group P2(1)/c with a = 15.7112(6), b = 6.8775(3), and c = 25.5217(12) A and beta = 103.778(5) degrees. Quantification of inhibition constants gave a clear structure-activity relationship. A single methylene group between the receptor binding site and the half-sandwich complex gave an IC(50) of 217 nM for HT(1A), whereas a butylene linker resulted in retention of the inhibition constant with an IC(50) of 6 nM with respect to underivatized WAY. For use as radiopharmaceuticals, the compounds have also been prepared with (99m)Tc in quantitative yield.  相似文献   
138.
Summary The effect of hydrogen reduction on the structure and catalytic properties of “thin film”and “inverse”model systems for supported metal catalysts is discussed. Thin film model catalysts were obtained by epitaxial growth of Pt and Rh nanoparticles on NaCl(001), which were coated with amorphous or crystalline supports of alumina, silica, titania, ceria and vanadia. Structural and morphological changes upon hydrogen reduction between 473 and 973 K were examined by high resolution electron microscopy. Metal-oxide interaction sets in at a specific reduction temperature and is characterized by an initial “wetting”stage, followed by alloy formation at increasing temperature, in the order VOx< TiOx< SiO2< CeOx< Al2O3. “Inverse”model systems were prepared by deposition of oxides on a metal substrate, e.g. VOx/Rh and VOx/Pd. Reduction of inverse systems at elevated temperature induces subsurface alloy formation. In contrast to common bimetallic surfaces, the stable subsurface alloys of V/Rh and V/Pd have a purely noble metal-terminated surface, with V positioned in near-surface layers. The uniform composition of the metallic surface layer excludes catalytic ensemble effects in favor of ligand effects. Activity and selectivity, e.g. for CO and CO2methanation and for partial oxidation of ethene, are mainly controlled by the temperature of annealing or reduction. Reduction above 573 K turned out to be beneficial for the catalytic activity of the subsurface alloys, but not for the corresponding thin film systems which tend to deactivate viaparticle encapsulation.</o:p>  相似文献   
139.
The reaction between the platinum(IV) complex trans-[PtCl(4)(EtCN)(2)] and the amino alcohols NH(2)CH(2)CH(2)OH, NH(2)CH(2)CH(Me)OH-(R)-(-), NH(2)CH(Ph)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(S)-(+), and NH(2)CH(Pr(n)())CH(2)OH proceeds rapidly at room temperature in CH(2)Cl(2) to furnish the amidine complexes [PtCl(4)(HN=C(Et)NH(arcraise;)OH)(2)] (1-6) in good yield (70-80%). The related reaction between the platinum(II) complex trans-[PtCl(2)(EtCN)(2)] and monoethanolamine in a molar ratio of 1:2 in CH(2)Cl(2) results in the addition of 4 equiv of NH(2)CH(2)CH(2)OH per mole of complex to give [Pt(HN=C(Et)NHCH(2)CH(2)OH)(2)(NH(2)CH(2)CH(2)OH)(2)](2+) (7). Formulation of 1-6 is based upon satisfactory C, H, N elemental analyses, electrospray mass spectrometry, IR spectroscopy, and (1)H, (13)C((1)H), (15)N, and (195)Pt NMR spectroscopies, while the structures of trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(2)OH)(2)] (1), trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(Me)OH-(R)-(-))(2)] (2), and trans-[PtCl(4)((Z)-NH=C(Et)NHCH(Et)CH(2)OH-(R)-(-))(2)] (4) were determined by X-ray single-crystal diffraction. The Z-amidine configuration of the ligands is preserved in CDCl(3) solutions as confirmed by gradient-enhanced (15)N,(1)H-HMQC spectroscopy and NOE experiments. The amidines, formed upon Pt(IV)-mediated nitrile-amino alcohol coupling, were liberated from their platinum(IV) complexes 1, 3, and 4 by reaction with Ph(2)PCH(2)CH(2)PPh(2) (dppe) giving free NH=C(Et)NHCHRCH(2)OH (R = H 8, Et 9, Ph 10), with the substituents R of different types, and dppe oxides; the P-containing species were identified by (31)P((1)H) NMR spectroscopy. NOESY spectroscopy indicates that the liberated amidines retained the same configuration relative to the C=N double bond, i.e., syn-(H,Et)-NH=C(Et)NHCHRCH(2)OH. The liberated hydroxo-functionalized amidines 8-10 were converted into oxazolines (11-13) in the presence of a catalytic amount of ZnCl(2). A similar catalytic effect has also been reached using anhydrous MSO(4) (M = Cu, Co, Cd), CdCl(2), and AlCl(3).  相似文献   
140.
Residual dipolar couplings (RDC) from partially aligned molecules provide long-range structural data and are thus particularly well adapted to rapid structure validation or protein fold recognition. Extensive measurements in two alignment media can also provide precise de novo structure from RDC alone. We have applied a novel combination of these approaches to the study of methionine sulfoxide reductase (MsrA) from Erwinia chrysanthemi, a 27 kDa enzyme essential for repairing oxidative stress damage. The tertiary fold was initially validated by comparing backbone RDC to expected values from the crystal structure of the homologous MsrA from Escherichia coli. Good agreement was found throughout the chain, verifying the overall topology of the molecule, with the exception of the catalytically important peptide P196-L202, where strong and systematic RDC violation was observed. No evidence for local differential mobility in this region was detected, implying that the structure of the strand differs in the two molecules. We have therefore applied the de novo approach meccano to determine the conformation of this peptide using only RDC. A single conformation is found that is in agreement with all measured data. The aligned peptide can be docked onto the expected covalence of the rest of the template molecule while respecting its strictly defined relative orientation. In contrast to the structure of MsrA from E. coli, the reactive side chain of Cys200 is oriented toward the interior of the molecule and therefore closer to the catalytic Cys53, obviating the need for previously proposed conformational reorganization prior to formation of this disulfide intermediate. This analysis requires only backbone assignment and uses unambiguously assigned and readily measurable structural data, thereby greatly economizing investigation time compared to established nuclear Overhauser effect- (nOe-) based structure calculation methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号