首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3902篇
  免费   140篇
  国内免费   20篇
化学   2895篇
晶体学   13篇
力学   68篇
数学   591篇
物理学   495篇
  2021年   36篇
  2020年   42篇
  2019年   52篇
  2018年   35篇
  2017年   21篇
  2016年   80篇
  2015年   109篇
  2014年   79篇
  2013年   145篇
  2012年   190篇
  2011年   231篇
  2010年   164篇
  2009年   119篇
  2008年   226篇
  2007年   206篇
  2006年   209篇
  2005年   211篇
  2004年   144篇
  2003年   120篇
  2002年   121篇
  2001年   64篇
  2000年   74篇
  1999年   69篇
  1998年   63篇
  1997年   71篇
  1996年   65篇
  1995年   65篇
  1994年   59篇
  1993年   72篇
  1992年   60篇
  1991年   31篇
  1990年   32篇
  1989年   29篇
  1988年   34篇
  1987年   40篇
  1986年   35篇
  1985年   57篇
  1984年   25篇
  1983年   31篇
  1982年   43篇
  1981年   20篇
  1980年   41篇
  1978年   29篇
  1977年   39篇
  1974年   19篇
  1973年   19篇
  1972年   21篇
  1971年   19篇
  1970年   19篇
  1969年   24篇
排序方式: 共有4062条查询结果,搜索用时 31 毫秒
101.
The correlation between β2‐, β3‐, and β2,3‐amino acid‐residue configuration and stability of helix and hairpin‐turn secondary structures of peptides consisting of homologated proteinogenic amino acids is analyzed (Figs. 1–3). To test the power of Zn2+ ions in fortifying and/or enforcing secondary structures of β‐peptides, a β‐decapeptide, 1 , four β‐octapeptides, 2 – 5 , and a β‐hexadecapeptide, 10 , have been devised and synthesized. The design was such that the peptides would a) fold to a 14‐helix ( 1 and 3 ) or a hairpin turn ( 2 and 4 ), or form neither of these two secondary structures (i.e., 5 ), and b) carry the side chains of cysteine and histidine in positions, which will allow Zn2+ ions to use their extraordinary affinity for RS? and the imidazole N‐atoms for stabilizing or destabilizing the intrinsic secondary structures of the peptides. The β‐hexadecapeptide 10 was designed to a) fold to a turn, to which a 14‐helical structure is attached through a β‐dipeptide spacer, and b) contain two cysteine and two histidine side chains for Zn complexation, in order to possibly mimic a Zn‐finger motif. While CD spectra (Figs. 6–8 and 17) and ESI mass spectra (Figs. 9 and 18) are compatible with the expected effects of Zn2+ ions in all cases, it was shown by detailed NMR analyses of three of the peptides, i.e., 2, 3, 5 , in the absence and presence of ZnCl2, that i) β‐peptide 2 forms a hairpin turn in H2O, even without Zn complexation to the terminal β3hHis and β3hCys side chains (Fig. 11), ii) β‐peptide 3 , which is present as a 14‐helix in MeOH, is forced to a hairpin‐turn structure by Zn complexation in H2O (Fig. 12), and iii) β‐peptide 5 is poorly ordered in CD3OH (Fig. 13) and in H2O (Fig. 14), with far‐remote β3hCys and β3hHis residues, and has a distorted turn structure in the presence of Zn2+ ions in H2O, with proximate terminal Cys and His side chains (Fig. 15).  相似文献   
102.
The success of perturbation calculations of second order for the NFE (“Nearly Free Electron”) metals and that of the two-parameter model of Pettifor for the transition elements show that the lattice-stability of the metals has simple physical reasons. Using the results of Harrison, Heine and Weaire, Deegan, and Pettifor, a model is developed which allows to explain the stability of the three metal lattices in terms of differences in the potentials. Only those potential differences are considered which are caused by the different packing of the lattices. With the aid of the virial theorem the band structure energy is connected with the potential bandstructure energy. The sequence of stability is predicted to be body centered cubic (bcc), hexagonal close packed (hcp), face centered cubic (fcc) with increasing valence electron concentration. The ranges of stability can be expressed in simple numbers. This simple model holds in principle for NFE as well as for transition metals because it contains no assumptions restricted to only one of these metal types. Deviations of the observed lattice stability from the model can be understood from the approximations involved.  相似文献   
103.
Structure of S-9,10-Dimethyl-1,3,5,7-tetraarsa-2,4,6,8-tetraoxaadamantane and 9,10-Diethyl-1,3,5,7-tetraarsa-2,4,6,8-tetraoxaadamantane S-9,10-Dimethyl-1,3,5,7-tetraarsa-2,4,6,8-tetraoxaadamantane ( 1 ) and 9,10-diethyl-1,3,5,7-tetraarsa-2,4,6,8-tetraoxaadamantane ( 2 ) have been prepared by the reaction of propionic acid, propionic anhydride and butyric acid, butyric anhydride, respectively, with arsenic(III)-oxide. The crystals of 1 are rhombic, a = 6.902(4), b = 11.121(5), c = 13.988(8), space group P212121. The crystals of 2 are monoclinic, a = 11.757(10), b = 11.255(10), c = 18.631 (18), β = 91.78(7), space group P21/n. The mean bond lengths and angles in 1 are AsO = 1.790 Å, AsC = 1.959 Å, OAsO = 100.60°, CAsO = 99.65°, AsOAs = 128.77°, AsCAs = 118.73°, and in 2 they are AsO = 1.780 Å, AsC = 1.978 Å, OAsO = 101.45°, CAsO = 99.55°, AsOAs = 129.64°, AsCAs = 117.72°.  相似文献   
104.
The lowest triplet state of azulene, T1(Az), can be populated efficiently by triplet energy transfer from the lowest triplet state of fluoranthene, T1(F1). In isopentane at temperatures 120 K ? T ? 193 K a delayed fluorescence S2(Az) → S0(Az) is found, caused by hetero-triplet—triplet annihilation T1(Az) + T1(Fl) → S2(Az) + S0(F1).  相似文献   
105.
Metabolism of Acetylenic Monocarboxylic and Dicarboxylic Acids Feeding of acetylenic monoacids with chain length of 11 to 18 C-atoms to rats led to excretion of dicarboxylic acids with retained triple bonds. 10-Octadecynoic acid led to the formation of metabolites with even and odd number of C-atoms, suggesting in addition to established ω- and β-oxidation an α-oxidative pathway.  相似文献   
106.
107.
Structural and dynamical properties of Zn(II) in aqueous solution were investigated, based on an ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation at double-zeta Hartree-Fock quantum mechanical level including the first and second hydration shells into the QM region. The inclusion of the second shell in the QM region resulted in significant changes in the properties of the hydrate. The first shell coordination number was found to be 6, the second shell consists of approximately 14 water molecules. The structural properties were determined in terms of RDF, ADF, tilt and theta angle distributions, while dynamics were characterized by mean ligand residence times, ion-ligand stretching frequencies and the vibrational and librational motions of water ligands.  相似文献   
108.
High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) has been used to investigate spectral and non-spectral interferences found with a conventional line source atomic absorption spectrometer in the determination of aluminum in pharmaceutical products containing elevated iron and sugar concentrations. A transversely heated graphite furnace was used as the atomizer in both spectrometers. The two most sensitive aluminum lines at 309.3 nm and 396.2 nm were investigated and it was found that an iron absorption line at 309.278 nm, in the vicinity of the aluminum line at 309.271 nm, could be responsible for some spectral interference. The simultaneous presence of iron and the organic components of the matrix were responsible for radiation scattering, causing high continuous and also structured background absorption at both wavelengths. The aluminum and iron absorption could not be separated in time, i.e., the iron interference could not be eliminated by optimizing the graphite furnace temperature program. However, an interference-free determination of aluminum was possible carrying out the measurements with HR-CS AAS at 396.152 nm after applying least squares background correction for the elimination of the structured background. Analytical working range and other figures of merit were determined and are presented for both wavelengths using peak volume registration (center pixel ± 1) and the center pixel only. Limits of detection and characteristic masses ranged from 1.1 to 2.5 pg and 13 to 43 pg, respectively. The method was used for the determination of the aluminum contamination in pharmaceutical formulations for iron deficiency treatment, which present iron concentrations from 10 to 50 g l− 1. Spike recoveries from 89% to 105% show that the proposed method can be satisfactorily used for the quality control of these formulations.  相似文献   
109.
The reactions F + H2 → HF + H, HF → H + F, F → F+ + e? and F + e? → F? were used as simple test cases to assess the additivity of basis set effects on reaction energetics computed at the MP4 level. The 6-31G and 6-311G basis sets were augmented with 1, 2, and 3 sets of polarization functions, higher angular momentum polarization functions, and diffuse functions (27 basis sets from 6-31Gd, p) to 6-31 ++ G(3df, 3pd) and likewise for the 6-311G series). For both series substantial nonadditivity was found between diffuse functions on the heavy atom and multiple polarization functions (e.g., 6-31 + G(3d, 3p) vs. 6-31 + G(d, p) and 6-31G(3d, 3p)). For the 6-311G series there is an extra nonadditivity between d functions on hydrogen and multiple polarization functions. Provided that these interactions are taken into account, the remaining basis set effects are additive to within ±0.5 kcal/mol for the reactions considered. Large basis set MP4 calculations can also be estimated to within ±0.5 kcal/mol using MP2 calculations, est. EMP4(6-31 ++ G(3df, 3pd)) ≈ EMP4(6-31G(d, p)) + EMP2(6-31 ++ G(3df, 3pd)) – EMP2(6-31G(d, p)) or EMP4(6-31 + G(d, p) + EMP2(6-31 ++ G(3df, 3pd)) – EMP2(6-31 + G(d, p)) and likewise for the 6-311G series.  相似文献   
110.
Aryl-cobalamins are a new class of organometallic structural mimics of vitamin B12 designed as potential ‘antivitamins B12’. Here, the first cationic aryl-cobinamides are described, which were synthesized using the newly developed diaryl-iodonium method. The aryl-cobinamides were obtained as pairs of organometallic coordination isomers, the stereo-structure of which was unambiguously assigned based on homo- and heteronuclear NMR spectra. The availability of isomers with axial attachment of the aryl group, either at the ‘beta’ or at the ‘alpha’ face of the cobalt-center allowed for an unprecedented comparison of the organometallic reactivity of such pairs. The homolytic gas-phase bond dissociation energies (BDEs) of the coordination-isomeric phenyl- and 4-ethylphenyl-cobinamides were determined by ESI-MS threshold CID experiments, furnishing (Co−C )-BDEs of 38.4 and 40.6 kcal mol−1, respectively, for the two β-isomers, and the larger BDEs of 46.6 and 43.8 kcal mol−1 for the corresponding α-isomers. Surprisingly, the observed (Co−C )-BDEs of the Coβ-aryl-cobinamides were smaller than the (Co−C )-BDE of Coβ-methyl-cobinamide. DFT studies and the magnitudes of the experimental (Co−C )-BDEs revealed relevant contributions of non-bonded interactions in aryl-cobinamides, notably steric strain between the aryl and the cobalt-corrin moieties and non-bonded interactions with and among the peripheral sidechains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号