首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   11篇
  国内免费   1篇
化学   172篇
晶体学   2篇
力学   16篇
数学   42篇
物理学   63篇
  2023年   4篇
  2022年   7篇
  2021年   8篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2016年   7篇
  2015年   10篇
  2014年   8篇
  2013年   30篇
  2012年   13篇
  2011年   20篇
  2010年   3篇
  2009年   9篇
  2008年   9篇
  2007年   6篇
  2006年   11篇
  2005年   8篇
  2004年   12篇
  2003年   7篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1986年   3篇
  1984年   2篇
  1981年   4篇
  1980年   5篇
  1979年   2篇
  1978年   5篇
  1965年   2篇
  1940年   2篇
  1932年   3篇
  1927年   2篇
  1926年   3篇
  1922年   2篇
  1920年   3篇
  1918年   2篇
  1912年   4篇
  1911年   2篇
  1910年   2篇
  1904年   1篇
  1899年   2篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
191.
Interfacial electron transfer (IET) between a chromophore and a semiconductor nanoparticle is one of the key processes in a dye-sensitized solar cell. Theoretical simulations of the electron transfer in polyoxotitanate nanoclusters Ti(17)O(24)(OPr(i))(20) (Ti(17)) functionalized with four p-nitrophenyl acetylacetone (NPA-H) adsorbates, of which the atomic structure has been fully established by X-ray diffraction measurements, are presented. Complementary experimental information showing IET has been obtained by EPR spectroscopy. Evolution of the time-dependent photoexcited electron during the initial 5 fs after instantaneous excitation to the NPA LUMO + 1 has been evaluated. Evidence for delocalization of the excitation over multiple chromophores after excitation to the NPA LUMO + 2 state on a 15 fs time scale is also obtained. While chromophores are generally considered electronically isolated with respect to neighboring sensitizers, our calculations show that this is not necessarily the case. The present work is the most comprehensive study to date of a sensitized semiconductor nanoparticle in which the structure of the surface and the mode of molecular adsorption are precisely defined.  相似文献   
192.
Reconciling glycocodes and their associated bioactivities, via 3D-structure, will rationalise burgeoning high-throughput functional glycomics data and underpin a new era of opportunity in chemical biology. A major impasse to achieving this goal is a detailed understanding of pyranose sugar ring 3D-conformation (or pucker) and the affiliated microsecond-timescale exchange kinetics. Here, we perform hardware-accelerated kinetically-rigorous equilibrium simulations of fundamental monosaccharides to produce the hypothesis that pyranoses have microsecond-timescale kinetic puckering signatures in water, classified as unstable (rare in the glycome), metastable (infrequently observed) and stable (prevalent). The predicted μs-metastability of β-d-glucose explained hitherto irreconcilable experimental measurements. Twisted puckers seen in carbohydrate enzymes were present in the aqueous 3D-ensemble (suggesting preorganization) and pyranose-water interactions accounted for the relative stability of β-d-galactose. Characteristic 3D-shapes for biologically- and commercially-important carbohydrates and new rules linking chemical modifications with pyranose μs-puckering kinetics are proposed. The observations advance structural-glycomics towards dynamic 3D-templates suitable for structure-based design.  相似文献   
193.
Full details of a total synthesis of the doubly prenylated cyclic peptide trunkamide A of marine origin, and also its C45 epimer, are described.  相似文献   
194.
A floating body with substantial heave motion is a challenging fluid–structure interaction problem for numerical simulation. In this paper we develop SPH in three dimensions to include variable particle mass distribution using an arbitrary Lagrange–Eulerian formulation with an embedded Riemann solver. A wedge or cone in initially still water is forced to move with a displacement equal to the surface elevation of a focused wave group. A two‐dimensional wedge case is used to evaluate two forms of repulsive‐force boundary condition on the body; the force depending on the normal distance from the object surface produced closer agreement with the experiment. For a three‐dimensional heaving cone the comparison between SPH and experiment shows excellent agreement for the force and free surface for motion with low peak spectral frequencies while for a higher peak frequency the agreement is reasonable in terms of phase and magnitude, but a small discrepancy appears at the troughs in the motion. Capturing the entire three‐dimensional flow field using an initially uniform particle distribution with sufficiently fine resolution requires an extremely large number of particles and consequently large computing resource. To mitigate this issue, we employ a variable mass distribution with fine resolution around the body. Using a refined mass distribution in a preselected area avoids the need for a dynamic particle refinement scheme and leads to a computational speedup of more than 600% or much improved results for a given number of particles. SPH with variable mass distribution is then applied to a single heaving‐float wave energy converter, the ‘Manchester Bobber’, in extreme waves and compared with experiments in a wave tank. The SPH simulations are presented for two cases: a single degree‐of‐freedom system with motion restricted to the vertical direction and with general motion allowing six degrees‐of‐freedom. The motion predicted for the float with general motion is in much closer agreement with experimental data than the vertically constrained system. Using variable particle mass distribution is shown to produce close agreement with a computation time 20% of that required with a uniformly fine resolution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
195.
196.
Abstract

High pressure X-ray diffraction studies were performed at room temperature on a uranium-neptunium binary alloy (U0, 40 Np0.60) using a diamond anvil cell in an energy dispersive facility. The sample maintained its simple cubic phase up to 62 GPa (highest pressure reached in This experiment). The bulk modulus and its pressure derivative were determined to be B0 = 82 (2) GPa and B0′ = 9.4 (1.3), from the experimental data in the pressure range 0–20 GPa. The present results are compared with those obtained by the same techniques used for uranium and neptunium.  相似文献   
197.
Cyanobacteria possess different carotenoids as scavengers of reactive oxygen species. In Synechocystis PCC6803, zeaxanthin, echinenone, beta-carotene and myxoxanthophyll are synthesized. By disruption of the ketolase and hydroxylase genes, it was possible to obtain mutants devoid of either zeaxanthin, echinenone, or a combination of both carotenoids. With these mutants, their function in protecting photosynthetic electron transport under high light stress as well as chlorophyll and carotenoid degradation after initiation of singlet oxygen or radical formation was analyzed. Wild type Synechocystis is very well protected against high light-mediated photooxidation. Absence of echinenone affects photosynthetic electron transport to only a small extent. However, complete depletion of zeaxanthin together with a modification of myxoxanthophyll resulted in strong photoinhibition of overall photosynthetic electron transport as well as the photosystem II reaction. In the double mutant lacking both carotenoids the effects were additive. The light saturation curves of photosynthetic electron transport of the high light-treated mutants exhibited not only a lower saturation value but also smaller slopes. Using methylviologen or methylene blue as a radical or singlet oxygen generators, respectively, massive degradation of chlorophyll and carotenoids, indicative of photooxidative destruction of the photosynthetic apparatus, was observed, especially in the mutants devoid of zeaxanthin.  相似文献   
198.
We present a short (and necessarily incomplete) review of the evidence for the accelerated expansion of the Universe. The most direct probe of acceleration relies on the detailed study of supernovae (SN) of type Ia. Assuming that these are standardizable candles and that they fairly sample a homogeneous and isotropic Universe, the evidence for acceleration can be tested in a model-independent and calibration-independent way. Various light-curve fitting procedures have been proposed and tested. While several fitters give consistent results for the so-called Constitution set, they lead to inconsistent results for the recently released SDSS SN. Adopting the SALT fitter and relying on the Union set, cosmic acceleration is detected by a purely kinematic test at 7σ when spatial flatness is assumed and at 4σ without any assumption on the spatial geometry. A weak point of the described method is the local set of SN (at z<0.2), as these SN are essential to anchor the Hubble diagram. These SN are drawn from a volume much smaller than the Hubble volume and could be affected by local structure. Without the assumption of homogeneity, there is no evidence for acceleration, as the effects of acceleration are degenerate with the effects of inhomogeneities. Unless we sit in the centre of the Universe, such inhomogeneities can be constrained by SN observations by means of tests of the isotropy of the Hubble flow.  相似文献   
199.
In this study, a novel and exceedingly simple method for the aqueous synthesis of stable, unagglomerated polypyrrole nanospheres was investigated. The method is template- and surfactant-free and uses only pyrrole monomer, water, and ozone. When the monomer concentration, exposure time to ozone, and temperature were varied, it was determined that the temperature was the critical factor controlling the particle size through particle size measurements via dynamic light scattering and transmission electron microscopy (TEM). From the particle size measurements, a particle size distribution with a number-weighted mean diameter of 73 nm and a standard deviation of 18 nm was achieved. The particles were also investigated using ζ-potential measurements, ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis in an effort to determine the identity of the nanoparticles as well as the mechanism by which the nanoparticles are formed and stabilized.  相似文献   
200.
Very diverse carotenoid structures exist in the photosynthesis apparatus of different algae. Among them, the keto derivatives are regarded the most antioxidative. Therefore, four different keto carotenoids, peridinin, fucoxanthin, siphonaxanthin and astaxanthin fatty acid monoesters, were isolated and purified from Amphidinium carterae, Phaeodactylum tricornutum, Caulerpa taxifolia and Haematococcus pluvialis, respectively. The carotenoids were assayed as inhibitors of photosensitizer initiated reactions or scavengers of radicals in the early events generating reactive oxygen species as starters for peroxidation and as protectants against the whole reaction chain finally leading to lipid peroxidation. These in vitro studies demonstrated the substantial antioxidative properties as indicated by the IC50 values of all four keto carotenoids with superior protection by astaxanthin fatty acid monoesters which were as effective as free astaxanthin and of peridinin against radicals. As an example, the in vivo relevance of fucoxanthin for protection of photosynthesis from excess light and from peroxidative agents was evaluated with intact cells. Cultures of P. tricornutum with decreased fucoxanthin content generated by inhibitor treatment were exposed to strong light or cumene hydroperoxyde. In each case, oxidation of chlorophyll as marker for damaging of the photosynthesis apparatus was less severe when the fucoxanthin was at maximum level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号