首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   2篇
化学   94篇
晶体学   4篇
力学   4篇
数学   2篇
物理学   20篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   5篇
  2008年   1篇
  2007年   6篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   5篇
  1976年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
11.
12.
13.
The Na-based osmium oxide pyrochlore was synthesized for the first time by an ion-exchange method using KOs2O6 as a host. The composition was identified as Na1.4Os2O6·H2O by electron probe micro-analysis, thermogravimetric analysis, and structural analysis using synchrotron X-ray diffraction. Na1.4Os2O6·H2O crystallizes in a regular pyrochlore structure with some defects (space group: Fd-3m, a=10.16851(1) Å). Electrical resistivity, heat capacity, and magnetization measurements clearly showed absence of superconductivity down to 2 K, being in large contrast to what was found for the β-type pyrochlore superconductor AOs2O6 (A=Cs, Rb, and K). The Sommerfeld coefficient is 22 mJ K−2 mol−1, being the smallest among AOs2O6. A magnetic anomaly at ∼57 K and associated magneto-resistance (+3.7% at 2 K in 70 kOe) were found.  相似文献   
14.
Properties of Sr2Cu(PO4)2 and Ba2Cu(PO4)2 having [Cu(PO4)2] linear chains in their structures with Cu-O-P-O-Cu linkages were studied by magnetic susceptibility (T=2-400 K, H=100 Oe) and specific heat measurements (T=0.45-21 K). Magnetic susceptibility versus temperature curves, χ(T), showed broad maxima at TM=92 K for Sr2Cu(PO4)2 and TM=82 K for Ba2Cu(PO4)2 characteristic of quasi-one-dimensional systems. The χ(T) data were excellently fitted by the spin susceptibility curve for the uniform S=1/2 chain (plus temperature-independent and Curie-Weiss terms) with g=2.153(4) and J/kB=143.6(2) K for Sr2Cu(PO4)2 and g=2.073(4) and J/kB=132.16(9) K for Ba2Cu(PO4)2 (Hamiltonian H=JΣSiSi+1). The similar J/kB values were obtained from the specific heat data. No anomaly was observed on the specific heat from 0.45 to 21 K for both compounds indicating that the temperatures of long-range magnetic ordering, TN, were below 0.45 K. Sr2Cu(PO4)2 and Ba2Cu(PO4)2 are an excellent physical realization of the S=1/2 linear chain Heisenberg antiferromagnet with kBTN/J<0.34% together with Sr2CuO3 (kBTN/J≈0.25%) and γ-LiV2O5 (kBTN/J<0.16%). Sr2Cu(PO4)2 and Ba2Cu(PO4)2 were stable in air up to 1280 and 1150 K, respectively.  相似文献   
15.
Addition of diethyl lithiodifluoromethylphosphonate to enantiomerically pure aromatic, heteroaromatic, and aliphatic aldehyde-derived sulfinimines afforded N-sulfinyl α,α-difluoro-β-aminophosphonates with generally good enantioselectivity and in high yield. The reaction with acetophenone-derived sulfinimine resulted in the formation of the addition product with high diastereoselectivity and in only moderate yield. A two-step deprotection involving treatment of diastereomerically pure N-sulfinyl α,α-difluoro-β-aminophosphonates with trifluoroacetic acid in EtOH followed by refluxing with 10 N HCl provided enantiopure α,α-difluoro-β-aminophosphonates and α,α-difluoro-β-aminophosphonic acids. The N-Cbz derivative of (R)-2-amino-1,1-difluoro-2-phenylethylphosphonate was a convenient starting point for the preparation of corresponding difluorophosphonate monoester, difluorophosphonic acid, and difluorophosphonamidic acid. At 21 °C difluorophosphonamidic acid was stable in aqueous solution at pH above 5.  相似文献   
16.
17.
Low-temperature structural properties of the synthetic mineral libethenite Cu2PO4OH were investigated by single-crystal X-ray diffraction, synchrotron X-ray powder diffraction, specific heat measurements, and Raman spectroscopy. A second-order structural phase transition from the Pnnm symmetry (a=8.0553(8) Å, b=8.3750(9) Å, c=5.8818(6) Å at 180 K) to the P21/n symmetry (a=8.0545(8) Å, b=8.3622(9) Å, c=5.8755(6) Å, β=90.0012(15) at 120 K) was found at 160 K during cooling. At 120 K, the monoclinic angle is 90.0012(15) from single crystal X-ray data vs 90.083(1) from powder X-ray diffraction data. The P21/n–to–Pnnm transition may be a general feature of the adamite-type compounds, M2XO4OH.  相似文献   
18.
19.
Development of a new method to synthesize nanoporous metal oxides with highly crystallized frameworks is of great interest because of their wide use in practical applications. Here we demonstrate a thermal decomposition of metal‐cyanide hybrid coordination polymers (CPs) to prepare nanoporous metal oxides. During the thermal treatment, the organic units (carbon and nitrogen) are completely removed, and only metal contents are retained to prepare nanoporous metal oxides. The original nanocube shapes are well‐retained even after the thermal treatment. When both Fe and Co atoms are contained in the precursors, nanoporous Fe?Co oxide with a highly oriented crystalline framework is obtained. On the other hand, when nanoporous Co oxide and Fe oxide are obtained from Co‐ and Fe‐contacting precursors, their frameworks are amorphous and/or poorly crystallized. Single‐crystal‐like nanoporous Fe?Co oxide shows a stable magnetic property at room temperature compared to poly‐crystalline metal oxides. We further extend this concept to prepare nanoporous metal oxides with hollow interiors. Core‐shell heterostructures consisting of different metal‐cyanide hybrid CPs are prepared first. Then the cores are dissolved by chemical etching using a hydrochloric acid solution (i.e., the cores are used as sacrificial templates), leading to the formation of hollow interiors in the nanocubes. These hollow nanocubes are also successfully converted to nanoporous metal oxides with hollow interiors by thermal treatment. The present approach is entirely different from the surfactant‐templating approaches that traditionally have been utilized for the preparation of mesoporous metal oxides. We believe the present work proves a new way to synthesize nanoporous metal oxides with controlled crystalline frameworks and architectures.  相似文献   
20.
SrCu2(PO4)2 was prepared by the solid-state method at 1153 K. Its structure was solved by direct methods in the space group Pccn (No. 56) with Z = 8 from synchrotron X-ray powder diffraction data measured at room temperature. Structure parameters were then refined by the Rietveld method to obtain the lattice parameters, a = 7.94217(8) A, b = 15.36918(14) A, and c = 10.37036(10) A. SrCu2(PO4)2 presents a new structure type and is built up from Sr2O16 and Cu1Cu2O8 units with Cu1...Cu2 = 3.256 A. The magnetic properties of SrCu2(PO4)2 were investigated by magnetic susceptibility, magnetization up to 65 T, Cu nuclear quadrupole resonance (NQR), electron-spin resonance, and specific heat measurements. With spin-dimer analysis, it was shown that the two strongest spin-exchange interactions between Cu sites result from the Cu1-O...O-Cu2 and Cu2-O...O-Cu2 super-superexchange paths with Cu1...Cu2 = 5.861 A and Cu2...Cu2 = 5.251 A, and the superexchange associated with the structural dimer Cu1Cu2O8 is negligible. The magnetic susceptibility data were analyzed in terms of a linear four-spin cluster model, Cu1-Cu2-Cu2-Cu1 with -2J(1)/kB = 82.4 K for Cu1-Cu2 and -2J(2)/k(B) = 59 K for Cu2-Cu2. A spin gap deduced from this model (Delta/kB = 63 K) is in agreement with that obtained from the Cu NQR data (Delta/kB = 65 K). A one-half magnetization plateau was observed between approximately 50 and 63 T at 1.3 K. Specific heat data show that SrCu2(PO4)2 does not undergo a long-range magnetic ordering down to 0.45 K. SrCu2(PO4)2 melts incongruently at 1189 K. We also report its vibrational properties studied with Raman spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号