首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   34篇
  国内免费   13篇
化学   371篇
晶体学   2篇
力学   28篇
数学   93篇
物理学   93篇
  2023年   4篇
  2022年   7篇
  2021年   24篇
  2020年   25篇
  2019年   23篇
  2018年   33篇
  2017年   17篇
  2016年   39篇
  2015年   28篇
  2014年   38篇
  2013年   60篇
  2012年   54篇
  2011年   60篇
  2010年   39篇
  2009年   35篇
  2008年   27篇
  2007年   25篇
  2006年   12篇
  2005年   12篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1932年   1篇
排序方式: 共有587条查询结果,搜索用时 406 毫秒
31.
This study evaluates the kinetic hydrate inhibition (KHI) performance of four quaternary ammonium hydroxides (QAH) on mixed CH4 + CO2 hydrate systems. The studied QAHs are; tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), tetramethylammonium hydroxide (TMAOH), and tetrapropylammonium hydroxide (TPrAOH). The test was performed in a high-pressure hydrate reactor at temperatures of 274.0 K and 277.0 K, and a concentration of 1 wt.% using the isochoric cooling method. The kinetics results suggest that all the QAHs potentially delayed mixed CH4 + CO2 hydrates formation due to their steric hindrance abilities. The presence of QAHs reduced hydrate formation risk than the conventional hydrate inhibitor, PVP, at higher subcooling conditions. The findings indicate that increasing QAHs alkyl chain lengths increase their kinetic hydrate inhibition efficacies due to better surface adsorption abilities. QAHs with longer chain lengths have lesser amounts of solute particles to prevent hydrate formation. The outcomes of this study contribute significantly to current efforts to control gas hydrate formation in offshore petroleum pipelines.  相似文献   
32.
Here, polymelamine formaldehyde was decorated on the surface of reduced graphene oxide whose surface was then electrodeposited with a sub-monolayer of platinum nanoparticles. The nanocomposite thus prepared was characterized using several spectroscopic methods. Using the nanocomposite as a potential electrocatalyst for carbon dioxide reduction, the products were detected by Raman spectroscopy, gas chromatography, 13C-NMR spectroscopy, and gas chromatography-mass spectrometry. The analytical results identified methanol as the main product of CO2 reduction. Moreover, analysis of the liquid products confirmed methanol as the predominant product with a current density of 0.4 mA/cm and a Faradaic efficiency of 93 %.  相似文献   
33.
34.
A peak deconvolution procedure used for the analysis of data corresponding to simultaneous overlapping processes begins with separation of individual processes using functions such as Gaussian, Lorentzian, Weibull, and Fraser–Suzuki (FS) followed by application of kinetic analysis methods to the separated peaks. We propose a coupled peak deconvolution procedure to link the parameters of the FS functions of similar peaks in two DTG curves obtained at different linear heating rates, so that the coordinates of each peak can be obtained in a constrained manner. The proposed technique is a kinetic deconvolution method rather than a pure mathematical deconvolution technique. To analyze individual peaks in our study, the non-parametric kinetic and Freidman’s isoconversional methods have been applied to determine kinetic triplet of each process. This technique has been tested with both simulated and experimental data. Using this technique, the effects of molecular weight and degree of hydrolysis of polyvinyl alcohol (PVA) samples on reaction mechanism and activation energy of thermal degradation were studied. The presence of acetate group in the PVA samples causes thermal stability, decreases the rate of main reactions, and increases the activation energy. The results of this study may help tailor heat-resistant materials with proper choice of polymer characteristics.  相似文献   
35.
A simple, efficient, and ecofriendly procedure has been developed using propane-l,2,3-triyl tris(hydrogen sulfate) as a catalyst for the synthesis of biscoumarin derivatives in water and solvent-free conditions. The significant features of the present protocol are simplicity, environmentally benign, high yields, no chromatographic separation, and recyclability of the catalyst.  相似文献   
36.
Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2.g-1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and Oxide to drv reformin feed increased the methane conversion and led to carbon free ooeration in combined orocesses.  相似文献   
37.
Polyaniline nanofibers are readily synthesized by bulk polymerization; ammonium per sulphate (APS) is used as oxidizing agent and hydrochloric acid as dopant without any hard or soft templates. A detailed study was conducted on the effect of a variety of synthetic conditions on the size and morphology of the polyaniline nanostructure. These conditions include the concentration of dopant, and the APS-to-aniline and acid-to-aniline molar ratios. The morphology of the nanofibers was confirmed by SEM and TEM. XRD and FT-IR and UV–visible spectroscopy were used for structural characterization of nanofibers. The results showed that not only the microstructure of the polyaniline product, but also other characteristics, for example conductivity, crystallinity, and, more importantly, the efficiency of the process are strongly affected by the synthetic conditions.  相似文献   
38.
Here, an electrochemical sensor based on CeO2‐SnO2/Pd was prepared and used for highly selective and sensitive determination of nitrite in some real samples. This nanocomposite was characterized by various methods like X‐ray photoelectron spectroscopy, X‐ray diffraction, energy dispersive spectroscopy, Fourier‐transform infrared spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical behavior of the sensor was evaluated by cyclic voltammetry. The results showed excellent catalytic property of the nanocomposite as a an electrocatalyst for nitrite oxidation. In the following, the experimental parameters affecting the analytical signal for nitrite were optimized. Under the optimal conditions, the limit of detection and sensitivity of the sensor were calculated as 0.10 μM and 652.95 μA.mM?1.cm?2, respectively. Also, the response of the sensor was linear in the range of 0.36 to 2200 μM of nitrite. Finally, some of the inherent features of the sensor such as repeatability, reproducibility and stability were examined after evaluation of the sensor selectivity in the presence of several interfering species.  相似文献   
39.
We investigated the oxygen reduction reaction (ORR) mechanism on Pt nanoparticles (NPs) dispersed on several carbon blacks with various physicochemical properties (i. e. specific surface ranging from 80 to 900 m2 g−1, different graphitization degree, etc.). Using the kinetic isotope effect (KIE) along with various electrochemical characterizations, we determined that the rate determining step (RDS) of the ORR is a proton-independent step when the density of Pt NPs on the surface of the carbon support is high. Upon decrease of the density of Pt NPs on the surface, the RDS of the ORR starts involving a proton, as denoted by an increase of the KIE >1. This underlined the critical role played by the carbon support in the oxygen reduction reaction electrocatalysis by Pt supported on high surface area carbon.  相似文献   
40.
We explore the non-commutative (NC) effects on the energy spectrum of a two-dimensional hydrogen atom. We consider a confined particle in a central potential and study the modified energy states of the hydrogen atom in both coordinates and momenta of non-commutativity spaces. By considering the Rashba interaction, we observe that the degeneracy of states can also be removed due to the spin of the particle in the presence of NC space. We obtain the upper bounds for both coordinates and momenta versions of NC parameters by the splitting of the energy levels in the hydrogen atom with Rashba coupling. Finally, we find a connection between the NC parameters and Lorentz violation parameters with the Rashba interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号