首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   548篇
  免费   22篇
化学   348篇
晶体学   1篇
力学   30篇
数学   68篇
物理学   123篇
  2023年   5篇
  2022年   7篇
  2021年   10篇
  2020年   7篇
  2016年   13篇
  2015年   8篇
  2014年   12篇
  2013年   31篇
  2012年   30篇
  2011年   35篇
  2010年   13篇
  2009年   11篇
  2008年   17篇
  2007年   17篇
  2006年   13篇
  2005年   16篇
  2004年   10篇
  2003年   15篇
  2002年   14篇
  2001年   22篇
  2000年   12篇
  1999年   21篇
  1998年   7篇
  1997年   12篇
  1996年   19篇
  1995年   6篇
  1994年   15篇
  1993年   15篇
  1992年   7篇
  1991年   4篇
  1990年   12篇
  1989年   9篇
  1988年   8篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1978年   6篇
  1974年   3篇
  1973年   6篇
  1972年   5篇
  1970年   5篇
  1969年   3篇
  1936年   3篇
  1913年   4篇
排序方式: 共有570条查询结果,搜索用时 15 毫秒
81.
Two-dimensional electrophoresis of membrane proteins   总被引:1,自引:0,他引:1  
One third of all genes of various organisms encode membrane proteins, emphasizing their crucial cellular role. However, due to their high hydrophobicity, membrane proteins demonstrate low solubility and a high tendency for aggregation. Indeed, conventional two-dimensional gel electrophoresis (2-DE), a powerful electrophoretic method for the separation of complex protein samples that applies isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, has a strong bias against membrane proteins. This review describes two-dimensional electrophoretic techniques that can be used to separate membrane proteins. Alternative methods for performing conventional 2-DE are highlighted; these involve replacing the IEF with electrophoresis using cationic detergents, namely 16-benzyldimethyl-n-hexadecylammonium chloride (16-BAC) and cetyl trimethyl ammonium bromide (CTAB), or the anionic detergent SDS. Finally, the separation of native membrane protein complexes through the application of blue and clear native gel electrophoresis (BN/CN-PAGE) is reviewed, as well as the free-flow electrophoresis (FFE) of membranes.  相似文献   
82.
We present the rational design and anion-binding properties of the first anion-templated pseudorotaxanes and catenanes in which the "wheel" component is provided by a calix[4]arene macrobicyclic unit. The designs and syntheses of two new calix[4]arene macrobicycles, 2 and 3, are presented, and the abilities of these new species both to bind anions and to undergo anion-dependent pseudorotaxane formation are demonstrated. Furthermore, it is shown that performing ring-closing metathesis reactions on some of these pseudorotaxane assemblies gives novel catenane species 14 and 15, in which the yield of interlocked molecule obtained is critically dependent on the presence of a suitable anion template, namely, chloride. Exchange of the chloride anion in catenane 14 a for hexafluorophosphate gives catenane 14 d, which contains a unique anion-binding domain defined by the permanently interlocked hydrogen-bond-donating calix[4]arene macrobicycle and pyridinium macrocycle fragments. The anion-binding properties of this domain are presented, and shown to differ from non-interlocked components.  相似文献   
83.
In recent TRIUMF experiments, a μ- beam is stopped in a solid hydrogen film with a small fraction of T2. The Ramsauer-Townsend (RT) mechanism allows μt to escape into vacuum with a few eV of energy. To study the emission process, an imaging system was used to determine the position of muon decays. Experimental histograms are in good agreement with a Monte Carlo simulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
84.
Solid hydrogen in the form of an inhomogeneous layered target offers several experimental advantages when compared with liquid or gas. Beams of non-thermalized muonic hydrogen atoms allow us to explore resonant molecular ion formation processes near eV kinetic energies. Isotopically specific layers make it possible to separate competing and confusing interactions and to employ the time of flight for comparison with predictions based on theoretical energy dependences. Unambiguous charged fusion product detection simplifies absolute intensity measurements. The systematic uncertainties encountered in resonant molecular ion formation measurements, using solid hydrogen target layers, are being investigated with simulations which use the many calculated energy-dependent rates and cross-sections which are now available. The importance of the rates for processes such as muon transfer and elastic scattering are discussed, and results of some recent analyses are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
85.
Photophysical properties in dilute MeCN solution are reported for seven RuII complexes containing two 2,2′‐bipyridine (bpy) ligands and different third ligands, six of which contain a variety of 4,4′‐carboxamide‐disubstituted 2,2′‐bipyridines, for one complex containing no 2,2′‐bipyridine, but 2 of these different ligands, for three multinuclear RuII complexes containing 2 or 4 [Ru(bpy)2] moieties and also coordinated via 4,4′‐carboxamide‐disubstituted 2,2′‐bipyridine ligands, and for the complex [(Ru(bpy)2(L)]2+ where L is N,N′‐([2,2′‐bipyridine]‐4,4′‐diyl)bis[3‐methoxypropanamide]. Absorption maxima are red‐shifted with respect to [Ru(bpy)3]2+, as are phosphorescence maxima which vary from 622 to 656 nm. The lifetimes of the lowest excited triplet metal‐to‐ligand charge transfer states 3MLCT in de‐aerated MeCN are equal to or longer than for [Ru(bpy)3]2+ and vary considerably, i.e., from 0.86 to 1.71 μs. Rate constants kq for quenching by O2 of the 3MLCT states were measured and found to be well below diffusion‐controlled, ranging from 1.2 to 2.0⋅109 dm3 mol−1 s−1. The efficiencies f of singlet‐oxygen formation during oxygen quenching of these 3MLCT states are relatively high, namely 0.53 – 0.89. The product of kq and f gives the net rate constant k for quenching due to energy transfer to produce singlet oxygen, and kqk equals k, the net rate constant for quenching due to energy dissipation of the excited 3MLCT states without energy transfer. The quenching rate constants were both found to correlate with ΔGCT, the free‐energy change for charge transfer from the excited Ru complex to oxygen, and the relative and absolute values of these rate constants are discussed.  相似文献   
86.
87.
88.
Anion sensing via either optical or electrochemical readouts has separately received enormous attention, however, a judicious combination of the advantages of both modalities remains unexplored. Toward this goal, we herein disclose a series of novel, redox-active, fluorescent, halogen bonding (XB) and hydrogen bonding (HB) BODIPY-based anion sensors, wherein the introduction of a ferrocene motif induces remarkable changes in the fluorescence response. Extensive fluorescence anion titration, lifetime and electrochemical studies reveal anion binding-induced emission modulation through intramolecular photoinduced electron transfer (PET), the magnitude of which is dependent on the nature of both the XB/HB donor and anion. Impressively, the XB sensor outperformed its HB congener in terms of anion binding strength and fluorescence switching magnitude, displaying significant fluorescence turn-OFF upon anion binding. In contrast, redox-inactive control receptors display a turn-ON response, highlighting the pronounced impact of the introduction of the redox-active ferrocene on the optical sensing performance. Additionally, the redox-active ferrocene motif also serves as an electrochemical reporter group, enabling voltammetric anion sensing in competitive solvents. The combined advantages of both sensing modalities were further exploited in a novel, proof-of-principle, fluorescence spectroelectrochemical anion sensing approach, enabling simultaneous and sensitive read out of optical and electrochemical responses in multiple oxidation states and at very low receptor concentration.  相似文献   
89.
Stationary phase optimised selectivity liquid chromatography (SOSLC) is an approach to tune a given LC separation by combining different stationary phases in a multi- segment column set-up. The presently available SOSLC optimisation procedure and algorithm are, however, only applicable to isocratic conditions. This is a severe limitation for the analysis of mixtures composed of components covering a broad hydrophobicity range. A strategy is described to circumvent this limitation. The components of a mixture are divided into different groups according to hydrophobicity as elucidated by a gradient analysis on a C18 reversed-phase column. Each group separation is then individually optimised with a specific isocratic mobile phase composition using the original SOSLC strategy. The mobile phase composition thereby only differs in the percentage of organic modifier between the various groups. Finally, a combination of stationary phases that guarantees sufficient selectivity for all the groups is selected and the separation is performed by a multiple step gradient, whereby each level consists of the mobile phase composition applied for the SOSLC optimisation of the individual groups. The multi step gradient approach is demonstrated through the analysis of a mixture of 27 steroids covering a wide range of hydrophobicity.  相似文献   
90.
The aim of this study was to propose a Process Analytical Technology (PAT) strategy for the quantitative in-line monitoring of an aqueous pharmaceutical suspension using Raman spectroscopy. A screening design was used to study the significance of process variables (mixing speed and height of the stirrer in the reactor) and of formulation variables (concentration of the active pharmaceutical ingredient (API) ibuprofen and the viscosity enhancer (xanthan gum)) on the time required to homogenize an aqueous pharmaceutical model suspension as response variable. Ibuprofen concentration (10% and 15% (w/v)) and the height of stirrer (position 1 and 2) were discrete variables, whereas the viscosity enhancer (concentration range: 1-2 g L-1) and the mixing speed (700-1000 rpm) were continuous variables. Next, a multilevel full factorial design was applied to study the effect of the remaining significant variables upon the homogenization process and to establish the optimum conditions for the process. Interactions between these variables were investigated as well. During each design experiment, the conformity index (CI) method was used to monitor homogeneity of the suspension mixing system in real-time using Raman spectroscopy in combination with a fibre optical immersion probe. Finally, a principal component regression (PCR) model was developed and evaluated to perform quantitative real-time and in-line measurements of the API during the mixing process. The experimental design results showed that the suspension homogenization process is an irregular process, for which it is impossible to model the studied variables upon the measured response variable. However, applying the PCR model it is possible to predict in-line and real-time the concentration of the API in a suspension during a mixing process. In this study, it is shown that Raman spectroscopy is a suitable PAT tool for the control of the homogenization process of an aqueous suspension. Raman spectroscopy not only allowed real-time monitoring of the homogeneity of the suspension, but also helped (in combination with experimental design) to understand the process. Further, the technique allowed real-time and in-line quantification of the API during the mixing process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号