首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
化学   36篇
力学   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有37条查询结果,搜索用时 62 毫秒
31.
Organosilver(III) fluoride complexes have been assigned a key role in different fluorination processes. To the best of our knowledge, however, none of them seem to have been isolated or even detected thus far. Here we report on the successful synthesis of the trifluoromethyl derivative [PPh4][(CF3)3AgF], which has been isolated in high yield. The thermodynamic stability of the Ag−F bond is shown by calculation and demonstrated by multistage mass spectrometry (MSn) under collision-induced dissociation (CID) conditions. Nevertheless, the substantial elongation found in the Ag−F bond (X-ray) is correlated with a marked nucleophilic character of the terminal F ligand. This Ag−F bond is, in fact, quite reactive: it suffers hydrolysis and is also solvolyzed by thiols.  相似文献   
32.
The trans isomer of the organogold(III) difluoride complex [PPh4][(CF3)2AuF2] has been obtained in a stereoselective way and in excellent yield by reaction of [PPh4][CF3AuCF3] with XeF2 under mild conditions. The compound is both thermally stable and reactive. Thus, the fluoride ligands are stereospecifically replaced by any heavier halide or by cyanide, the cyanide affording [PPh4][trans‐(CF3)2Au(CN)2]. The organogold fluoride complexes [CF3AuFx]? (x=1, 2, 3) have been experimentally detected to arise upon collision‐induced dissociation of the [trans‐(CF3)2AuF2]? anion in the gas phase. Their structures have been calculated by DFT methods. In the isomeric forms identified for the open‐shell species [CF3AuF2]?, the spin density residing on the metal center is found to strongly depend on the precise stereochemistry. Based on crystallographic evidence, it is concluded that Auiii and Agiii have similar covalent radii, at least in their most common square‐planar geometry.  相似文献   
33.
The dinuclear Pt–Au complex [(CNC)(PPh3)Pt Au(PPh3)](ClO4) ( 2 ) (CNC=2,6‐diphenylpyridinate) was prepared. Its crystal structure shows a rare metal–metal bonding situation, with very short Pt–Au and Au–Cipso(CNC) distances and dissimilar Pt–Cipso(CNC) bonds. Multinuclear NMR spectra of 2 show the persistence of the Pt–Au bond in solution and the occurrence of unusual fluxional behavior involving the [PtII] and [AuI] metal fragments. The [PtII]??? [AuI] interaction has been thoroughly studied by means of DFT calculations. The observed bonding situation in 2 can be regarded as a model for an intermediate in a transmetalation process.  相似文献   
34.
Reduction of compound "Pd(bcope)(OTf)2" [bcope = (c-C8H14-1,5)PCH2CH2P(c-C8H14-1,5); OTf = O3SCF3] with H2/CO yields a mixture of Pd(I) compounds [Pd2(bcope)2(CO)2](OTf)2 (1) and [Pd2(bcope)2(mu-CO)(mu-H)](OTf) (2), whereas reduction with H2 or Ph3SiH in the absence of CO leads to [Pd3(bcope)3(mu3-H)2](OTf)2 (3). Exposure of 3 to CO leads to 1 and 2. The structures of 1 and 3 have been determined by X-ray diffraction. Complex [Pd2(bcope)2(CO)2](2+) displays a metal-metal bonded structure with a square planar environment for the Pd atoms and terminally bonded CO ligands and is fluxional in solution. DFT calculations aid the interpretation of this fluxional behavior as resulting from an intramolecular exchange of the two inequivalent P atom positions via a symmetric bis-CO-bridged intermediate. A cyclic voltammetric investigation reveals a very complex redox behavior for the "Pd(bcope)(OTf)2"/CO system and suggests possible pathways leading to the formation of the various observed products, as well as their relationship with the active species of the PdL2(2+)/CO/H2-catalyzed oxo processes (L2 = diphosphine ligands).  相似文献   
35.
This study evaluates the suitability of commercially available adsorbents for the measurement of gaseous organic mercury species namely monomethylmercury (MMHg) and dimethylmercury (DMHg).  相似文献   
36.
Breakthrough volumes, average percentage recoveries, and storage stabilities were obtained for vapors of 8 volatile organic compounds (pentane, octane, undecane, isooctane, cyclohexane, toluene, methanol, and dichloromethane) on a new adsorbent material, Hypersol-Macronet, MN-200. Breakthrough volumes were estimated as half of the gas chromatographic specific retention volumes at 20 degrees C for the compounds. Recoveries of the adsorbates were determined by both solvent extraction and thermal desorption methods. The results obtained compare favorably with those for Tenax GR (values reported in the published literature and others obtained in our laboratory). Results of storage stability studies on MN-200 meet the criterion for acceptability (<10% loss). High adsorption capacity for very volatile and polar compounds, combined with ease of desorption of less volatile compounds, render MN-200 a highly promising adsorbent for sampling volatile organic compounds in indoor and outdoor air.  相似文献   
37.
Co/SSZ-13 zeolites were prepared by heating the finely dispersed mixture of NH4-SSZ-13 and different cobalt salts up to 550 °C. Investigations by thermogravimetry – differential scanning calorimetry – mass spectrometry provided new insight into details of the solid-state reaction. Formation of Co carrying hydrate melt or volatile species was shown to proceed from chloride, nitrate, or acetylacetonate Co precursor salts upon thermal treatment. This phase change allows the transport of the Co species into the zeolite pores. The reaction of the NH4+ or H+ zeolite cations and the mobile Co precursors generates vapor or gas products, readily leaving the zeolite pores, and cobalt ions in lattice positions suggesting that solid-state ion-exchange is the prevailing process. The obtained catalysts are of good activity and N2 selectivity in the CH4/NO-SCR reaction. The thermal treatment of acetate or formate salts give solid intermediates that are unable to get in contact and react with the cations in the zeolite micropores. These catalysts contain mainly Co-oxide clusters located on the outer surface of the zeolite crystallites and have poor catalytic performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号