首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2857篇
  免费   50篇
  国内免费   8篇
化学   1464篇
晶体学   21篇
力学   71篇
数学   304篇
物理学   1055篇
  2019年   20篇
  2016年   36篇
  2015年   39篇
  2014年   53篇
  2013年   65篇
  2012年   96篇
  2011年   116篇
  2010年   48篇
  2009年   48篇
  2008年   120篇
  2007年   101篇
  2006年   119篇
  2005年   126篇
  2004年   88篇
  2003年   67篇
  2002年   63篇
  2001年   63篇
  2000年   46篇
  1999年   31篇
  1998年   29篇
  1997年   43篇
  1996年   66篇
  1995年   62篇
  1994年   57篇
  1993年   72篇
  1992年   44篇
  1991年   25篇
  1990年   31篇
  1989年   38篇
  1988年   33篇
  1987年   30篇
  1986年   36篇
  1985年   26篇
  1984年   31篇
  1983年   26篇
  1982年   27篇
  1981年   23篇
  1980年   30篇
  1979年   20篇
  1978年   25篇
  1976年   19篇
  1975年   30篇
  1974年   20篇
  1973年   21篇
  1971年   19篇
  1969年   19篇
  1968年   50篇
  1967年   117篇
  1966年   110篇
  1965年   71篇
排序方式: 共有2915条查询结果,搜索用时 0 毫秒
91.
92.
Abstract— Psoralens are a class of pharmaceutical agents commonly used to treat several cutaneous disorders. When irradiated with a mode-locked titanium: sapphire (Ti: sapphire) laser tuned to 730 nm, an aqueous solution of 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) emits blue light. The emission spectrum is centered at 452 nm and is identical to that obtained by one-photon excitation with UVA excitation, and its magnitude depends quad-ratically on the intensity of laser excitation. These results suggest that two-photon excitation occurs to a potentially photochemically active state. To estimate the two-photon absorption cross section, it was first necessary to measure the emission quantum yield of HMT using 365 nm excitation at room temperature that resulted in a value of 0.045 ± 0.007. The two-photon absorption cross section of HMT at 730 nm is therefore estimated to be 20 ± 10−50 cm4 s (20 Göppert-Mayer). The excited-state photophysics and photochemistry of psoralens suggest potential applications to cutaneous phototherapy in diseases such as psoriasis and dystrophic epidermolysis bullosa.  相似文献   
93.
In the quest for low-molecular-weight metal sulfur complexes that bind nitrogenase-relevant small molecules and can serve as model complexes for nitrogenase, compounds with the [Ru(PiPr(3))('N(2)Me(2)S(2)')] fragment were found ('N(2)Me(2)S(2)'(2-)=1,2-ethanediamine-N,N'-dimethyl-N,N'-bis(2-benzenethiolate)(2-)). This fragment enabled the synthesis of a first series of chiral metal sulfur complexes, [Ru(L)(PiPr(3))('N(2)Me(2)S(2)')] with L=N(2), N(2)H(2), N(2)H(4), and NH(3), that meet the biological constraint of forming under mild conditions. The reaction of [Ru(NCCH(3))(PiPr(3))('N(2)Me(2)S(2)')] (1) with NH(3) gave the ammonia complex [Ru(NH(3))(PiPr(3))('N(2)Me(2)S(2)')] (4), which readily exchanged NH(3) for N(2) to yield the mononuclear dinitrogen complex [Ru(N(2))(PiPr(3))('N(2)Me(2)S(2)')] (2) in almost quantitative yield. Complex 2, obtained by this new efficient synthesis, was the starting material for the synthesis of dinuclear (R,R)- and (S,S)-[micro-N(2)[Ru(PiPr(3))('N(2)Me(2)S(2)')](2)] ((R,R)-/(S,S)-3). (Both 2 and 3 have been reported previously.) The as-yet inexplicable behavior of complex 3 to form also the R,S isomer in solution has been revealed by DFT calculations and (2)D NMR spectroscopy studies. The reaction of 1 or 2 with anhydrous hydrazine yielded the hydrazine complex [Ru(N(2)H(4))(PiPr(3))('N(2)Me(2)S(2)')] (6), which is a highly reactive intermediate. Disproportionation of 6 resulted in the formation of mononuclear diazene complexes, the ammonia complex 4, and finally the dinuclear diazene complex [micro-N(2)H(2)[Ru(PiPr(3))('N(2)Me(2)S(2)')](2)] (5). Dinuclear complex 5 could also be obtained directly in an independent synthesis from 1 and N(2)H(2), which was generated in situ by acidolysis of K(2)N(2)(CO(2))(2). Treatment of 6 with CH(2)Cl(2), however, formed a chloromethylated diazene species [[Ru(PiPr(3))('N(2)Me(2)S(2)')]-micro-N(2)H(2)[Ru(Cl)('N(2)Me(2)S(2)CH(2)Cl')]] (9) ('N(2)Me(2)S(2)CH(2)Cl'(2-) =1,2-ethanediamine-N,N'-dimethyl-N-(2-benzenethiolate)(1-)-N'-(2-benzenechloromethylthioether)(1-)]. The molecular structures of 4, 5, and 9 were determined by X-ray crystal structure analysis, and the labile N(2)H(4) complex 6 was characterized by NMR spectroscopy.  相似文献   
94.
The photochemical reactivity of β-lapachone ( 1 ), nor -β-lapachone ( 2 ) and 1,2-naphthoquinone ( 3 ) towards amino acids and nucleobases or nucleosides has been examined employing the nanosecond laser flash photolysis technique. Excitation (λ = 355 nm) of degassed solutions of 1 – 3 , in acetonitrile, resulted in the formation of their corresponding triplet excited states. These transients were efficiently quenched by l -tryptophan, l -tryptophan methyl ester, l -tyrosine, l -tyrosine methyl ester and l -cysteine ( k q  ≈ 109 L mol−1 s−1). For l -tryptophan, l -tyrosine and their methyl esters new transients were formed in the quenching process, which were assigned to the corresponding radical pair resulting from an initial electron transfer from the amino acids or their esters to the excited quinone, followed by a fast proton transfer. No measurable quenching rate constants could be observed in the presence of thymine and thymidine. On the other hand, efficient rate constants were obtained when 1 – 3 were quenched by 2'-deoxyguanosine ( k q  ≈ 109 L mol−1 s−1). The quantum efficiency of singlet oxygen (1O2) formation from 1 to 3 was determined employing time-resolved near-IR emission studies upon laser excitation and showed considerably high values in all cases (ΦΔ = 0.6), which are fully in accord with the ππ* character of these triplets in acetonitrile.  相似文献   
95.
The step‐economical late‐stage diversification of tryptophan‐containing peptides was accomplished through chemo‐ and site‐selective palladium‐catalyzed C?H arylation under exceedingly mild reaction conditions. Thus, the C?H functionalization occurred efficiently at 23 °C with a catalyst loading as low as 0.5 mol %, and/or in H2O.  相似文献   
96.
The reaction of the title diketone (3) with phenyl Grignard produces (with rate constant k(1)) the conjugate base (6-M) of 10-hydroxy-10-phenylcyclooctadecanone (6), which is subsequently converted (with rate constant k(2)) to the conjugate base of the title diol, as a mixture of the cis (7, 55%) and trans (8, 45%) isomers. The ratio k(2)/k(1), 2.2 +/- 0.4, indicates that the carbonyl group in 6-M is 4.4 times as reactive as each carbonyl in 3. Competition experiments further demonstrate that the relative rates (per carbonyl) for addition of phenylmagnesium bromide to 3, 10-methylenecyclooctadecanone (11), and cyclopentadecanone (12) are 1.0:0.60:1.92. Possible reasons for this order of reactivity are discussed. Diols 7 and 8 undergo facile double dehydration to form the title diene 13, which is predicted by molecular mechanics calculations to be the most stable of the four possible symmetrical diene isomers. The structures of 7, 8, and 13 were secured by single-crystal X-ray studies.  相似文献   
97.
The controlled assembly of well-defined planar nanoclusters from molecular precursors is synthetically challenging and often plagued by the predominant formation of 3D-structures and nanoparticles. Herein, we report planar iron hydride nanoclusters from reactions of main group element hydrides with iron(II) bis(hexamethyldisilazide). The structures and properties of isolated Fe4, Fe6, and Fe7 nanoplatelets and calculated intermediates enable an unprecedented insight into the underlying building principle and growth mechanism of iron clusters, metal monolayers, and nanoparticles.  相似文献   
98.
Skeleton Rearrangement of an α-β-Unsaturated γ,δ-Epoxyketone during Birch Reduction: Structure Elucidation by Means of 13C-INADEQUATE-NMR Spectroscopy When the γ-epoxide 2 of β-ionone is treated under standard Birch-reduction conditions, unexpectedly a 70% combined yield of regioisomeric octalones 4 and 5 is isolated. These products unquestionably result form cleavage of the central epoxide C?C bond. The structure of compounds 4 and 5 could be determined by means of 13C-INADEQUATE-NMR spectroscopy.  相似文献   
99.
The title compound crystallizes as the mono­hydrate, [Co(SeO3)(NH3)4]NO3·H2O. The crystallographic mirror symmetry coincides with the molecular symmetry; the mirror plane passes through the cation, anion and water mol­ecule. The CoN4O2 octahedron is distorted, with the selenito group acting as a bidentate ligand through two bridging O atoms to the cobalt. The coordinated Se—O distance is 1.742 (2) Å, whereas the uncoordinated Se—O distance is 1.646 (3) Å. A three‐dimensional hydrogen‐bonded network exists between [Co(SeO3)(NH3)4]NO3 and the water mol­ecule. The nitrate anion and water mol­ecule form open pores in the structure when hydrogen bonded to two neighboring [Co(SeO3)(NH3)4]+ cations. Selenium participates in two types of relatively close intermolecular interactions with neighboring charged species (Se?N1 and Se?O3), but does not participate in an interaction with a neighboring O2 atom, the nearest contact distance being 4.638 (3) Å.  相似文献   
100.
We report the application of nanoelectrospray ionization tandem mass spectrometry (nES-MS/MS) and capillary LC/microelectrospray MS/MS (cLC/&mgr;ES-MS/MS) for sequencing sulfonic acid derivatized tryptic peptides. These derivatives were specifically prepared to facilitate low-energy charge-site-initiated fragmentation of C-terminal arginine-containing peptides, and to enhance the selective detection of a single series of y-type fragment ions. Both singly and doubly protonated peptides were analyzed by MS/MS and the results were compared with those from their derivatized counterparts. Model peptides and peptides from tryptic digests of gel-isolated proteins were analyzed. Derivatized singly protonated peptides fragment in the same way by nES-MS/MS as they do by post-source decay matrix-assisted laser desorption/ionization mass spectrometry (PSD-MALDI-MS). They produce fragment ion spectra dominated by y-ions, and the simplified spectra are readily interpreted de novo. Doubly protonated peptides fragment in much the same way as their non-derivatized doubly protonated counterparts. The fragmentation of doubly protonated derivatives is especially useful for sequencing peptides that possess a proline residue near the N-terminus of the molecule. The singly protonated forms of these proline-containing derivatives often show enhanced fragmentation on the N-terminal side of the proline and considerably reduced fragmentation on the C-terminal side. In addition, sulfonic acid derivatization increases the in-source fragmentation of arginine-containing peptides. This could be useful for sequence verification and sequence tagging for use in single stage mass spectrometry. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号