排序方式: 共有82条查询结果,搜索用时 15 毫秒
31.
Zheng W Cleveland ZI Möller HE Driehuys B 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2011,208(2):284-290
When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of (3)He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum (3)He relaxation rate of 3.83×10(-3) s(-1) (T(1)=4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T(1) would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T(1) of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. 相似文献
32.
Jannie P. Wijnen Marinette Van der Graaf Tom W.J. Scheenen Dennis W.J. Klomp Bastiaan E. de Galan Albert J.S. Idema Arend Heerschap 《Magnetic resonance imaging》2010
Objectives
As a unique tool to assess metabolic fluxes noninvasively, 13C magnetic resonance spectroscopy (MRS) could help to characterize and understand malignancy in human tumors. However, its low sensitivity has hampered applications in patients. The aim of this study was to demonstrate that with sensitivity-optimized localized 13C MRS and intravenous infusion of [1-13C]glucose under euglycemia, it is possible to assess the dynamic conversion of glucose into its metabolic products in vivo in human glioma tissue.Materials and Methods
Measurements were done at 3 T with a broadband single RF channel and a quadrature 13C surface coil inserted in a 1H volume coil. A 1H/13C polarization transfer sequence was applied, modified for localized acquisition, alternatively in two (50 ml) voxels, one encompassing the tumor and the other normal brain tissue.Results
After about 20 min of [1-13C]glucose infusion, a [3-13C]lactate signal appeared among several resonances of metabolic products of glucose in MR spectra of the tumor voxel. The resonance of [3-13C]lactate was absent in MR spectra from contralateral tissue. In addition, the intensity of [1-13C]glucose signals in the tumor area was about 50% higher than that in normal tissue, likely reflecting more glucose in extracellular space due to a defective blood–brain barrier. The signal intensity for metabolites produced in or via the tricarboxylic acid (TCA) cycle was lower in the tumor than in the contralateral area, albeit that the ratios of isotopomer signals were comparable.Conclusion
With an improved 13C MRS approach, the uptake of glucose and its conversion into metabolites such as lactate can be monitored noninvasively in vivo in human brain tumors. This opens the way to assessing metabolic activity in human tumor tissue. 相似文献33.
Diffusion Monte Carlo computations, with and without importance sampling, of the zero-point properties of H(5)(+) and its isotopomers using a recent high accuracy global potential energy surface are presented. The global minimum of the potential possesses C(2v) symmetry, but the calculations predict a D(2d) geometry for zero-point averaged structure of H(5)(+) with one H atom "in the middle" between two HH diatoms. The predicted zero-point geometries of the deuterated forms have H in the middle preferred over D in the middle and for a nonsymmetric arrangement of D atoms the preferred arrangement is one which maximizes the number of D as the triatomic ion. We speculate on the consequences of these preferences in scattering of H(2)+H(3)(+) and isotopomers at low energies, such as those in the interstellar medium. 相似文献
34.
Ralf I Kaiser Leonid Belau Stephen R Leone Musahid Ahmed Yimin Wang Bastiaan J Braams Joel M Bowman 《Chemphyschem》2007,8(8):1236-1239
For the first time, two hydrogen-deficient hydrocarbon radicals are generated in situ via laser ablation of graphite and seeding the ablated species in acetylene gas, which acts as a carrier and reactant simultaneously. By recording photoionization efficiency curves (PIE) and simulating the experimental spectrum with computed Franck-Condon (FC) factors, we can reproduce the general pattern of the PIE curve of m/z=37. We recover ionization energies of 9.15 eV and 9.76 eV for the linear and cyclic isomers, respectively. Our combined experimental and theoretical studies provide an unprecedented, versatile pathway to investigate the ionization energies of even more complex hydrocarbon radicals in situ, which are difficult to prepare by classical synthesis, in future experiments. 相似文献
35.
Bastiaan L. Duivelshof Amarande Murisier Julien Camperi Szabolcs Fekete Alain Beck Davy Guillarme Valentina D'Atri 《Journal of separation science》2021,44(1):35-62
Fc‐Fusion proteins represent a successful class of biopharmaceutical products, with already 13 drugs approved in the European Union and United States as well as three biosimilar versions of etanercept. Fc‐Fusion products combine tailored pharmacological properties of biological ligands, together with multiple functions of the fragment crystallizable domain of immunoglobulins. There is a great diversity in terms of possible biological ligands, including the extracellular domains of natural receptors, functionally active peptides, recombinant enzymes, and genetically engineered binding constructs acting as cytokine traps. Due to their highly diverse structures, the analytical characterization of Fc‐Fusion proteins is far more complex than that of monoclonal antibodies and requires the use and development of additional product‐specific methods over conventional generic/platform methods. This can be explained, for example, by the presence of numerous sialic acids, leading to high diversity in terms of isoelectric points and complex glycosylation profiles including multiple N‐ and O‐linked glycosylation sites. In this review, we highlight the wide range of analytical strategies used to fully characterize Fc‐fusion proteins. We also present case studies on the structural assessment of all commercially available Fc‐fusion proteins, based on the features and critical quality attributes of their ligand‐binding domains. 相似文献
36.
We present a quasiclassical trajectory study of the photodissociation of CH3CHO to molecular and radical products, CH4 + CO and CH3 + HCO, respectively, using global ab initio-based potentials energy surfaces. The molecular products have a well-defined potential barrier transition state (TS) but the dynamics exhibit strong deviations from the TS pathway to these products. The radical products are formed via a variational TS. Calculations are reported at total energies corresponding to photolysis wavelengths of 308, 282, 264, 248 and 233 nm. The results at 308 nm focus on a comparison with experiment [Houston, P. L.; Kable, S. H. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16079] and the elucidation of the nature and extent of non-TS reaction dynamics to form the molecular products, CH4 + CO. At the other wavelengths the focus is the branching ratio of these products and the radical products, CH3 + HCO. 相似文献
37.
A realistic estimate of the uncertainty of a measurement result is essential for its reliable interpretation. Recent methods for such estimation include the contribution to uncertainty from the sampling process, but they only include the random and not the systematic effects. Sampling Proficiency Tests (SPTs) have been used previously to assess the performance of samplers, but the results can also be used to evaluate measurement uncertainty, including the systematic effects. A new SPT conducted on the determination of moisture in fresh butter is used to exemplify how SPT results can be used not only to score samplers but also to estimate uncertainty. The comparison between uncertainty evaluated within- and between-samplers is used to demonstrate that sampling bias is causing the estimates of expanded relative uncertainty to rise by over a factor of two (from 0.39% to 0.87%) in this case. General criteria are given for the experimental design and the sampling target that are required to apply this approach to measurements on any material. 相似文献
38.
Nakata M Braams BJ Fukuda M Percus JK Yamashita M Zhao Z 《The Journal of chemical physics》2006,125(24):244109
Calculations on small molecular systems indicate that the variational approach employing the two-particle reduced density matrix (2-RDM) as the basic unknown and applying the P, Q, G, T1, and T2 representability conditions provides an accuracy that is competitive with the best standard ab initio methods of quantum chemistry. However, in this paper we consider a simple class of Hamiltonians for which an exact ground state wave function can be written as a single Slater determinant and yet the same 2-RDM approach gives a drastically nonrepresentable result. This shows the need for stronger representability conditions than the mentioned ones. 相似文献
39.
van Merode AE Duval JF van der Mei HC Busscher HJ Krom BP 《Colloids and surfaces. B, Biointerfaces》2008,64(2):302-306
Initial adhesion is a determinant in the development of microbial biofilms. It is influenced, amongst others, by the surface hydrophobicity and the electrostatic characteristics of the substratum and adhering organisms. Enterococcus faecalis strains, grown in pure cultures, generally display subpopulations with different electrokinetic features, reflected in a bimodal electrophoretic mobility distribution. Here, the initial adhesion kinetics of five heterogeneous and five homogeneous E. faecalis strains were followed in a parallel-plate flow chamber. After 4h of flow, heterogeneous strains adhered in significantly higher numbers than homogeneous strains (7.3 x 10(6) and 1.9 x 10(6)cm(-2), respectively), but the initial deposition rates were not significantly influenced (740 and 600 cm(-2)s(-1), respectively). Apparently, initial deposition of bacteria is mainly governed by attractive Lifshitz-Van der Waals forces that overwhelm the electrostatic repulsion energy barrier, thus resulting in similar initial deposition rates for the various bacterial populations investigated. In contrast, during later stages of adhesion, bacteria in heterogeneous cultures likely experience a lower electrostatic repulsion from already adhering bacteria than bacteria in homogeneous cultures, thus allowing a closer proximity of the bacteria with respect to each other, which ultimately leads to increased adhesion after 4 h. 相似文献
40.
Devigny C Perez-Balderas F Hoogeland B Cuboni S Wachtel R Mauch CP Webb KJ Deussing JM Hausch F 《Journal of the American Chemical Society》2011,133(23):8927-8933
The 41-amino acid peptide corticotropin releasing factor (CRF) is a major modulator of the mammalian stress response. Upon stressful stimuli, it binds to the corticotropin releasing factor receptor 1 (CRF(1)R), a typical member of the class-B G-protein-coupled receptors (GPCRs) and a prime target in the treatment of mood disorders. To chemically probe the molecular interaction of CRF with the transmembrane domain of its cognate receptor, we developed a high-throughput conjugation approach that mimics the natural activation mechanism of class-B GPCRs. An acetylene-tagged peptide library was synthesized and conjugated to an azide-modified high-affinity carrier peptide derived from the CRF C-terminus using copper-catalyzed dipolar cycloaddition. The resulting conjugates reconstituted potent agonists and were tested in situ for activation of the CRF(1) receptor in a cell-based assay. By use of this approach we (i) defined the minimal sequence motif that is required for full receptor activation, (ii) identified the critical functional groups and structure-activity relationships, (iii) developed an optimized, highly modified peptide probe with high potency (EC(50) = 4 nM) that is specific for the activation domain of the receptor, and (iv) probed the behavioral role of CRF receptors in living mice. The membrane recruitment by a high-affinity carrier enhanced the potency of the tethered peptides by >4 orders of magnitude and thus allowed the testing of very weak initial fragments that otherwise would have been inactive on their own. As no chromatography purification of the test peptides was necessary, a substantial increase in screening throughput was achieved. Importantly, the peptide conjugates can be used to probe the endogenous receptor in its native environment in vivo. 相似文献