首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
化学   27篇
晶体学   1篇
力学   1篇
数学   3篇
物理学   2篇
  2021年   2篇
  2016年   1篇
  2012年   5篇
  2011年   8篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1987年   2篇
  1985年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1943年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
11.
In this study we report about the aromaticity of the prototypical [(H(t)Ac)(3)(μ(2)-H)(6)], [(H(t)Th)(3)(μ(2)-H)(6)](+), and [(H(t)Pa)(3)(μ(2)-H)(6)] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(H(t)Ac)(3)(μ(2)-H)(6)] and [(H(t)Th)(3)(μ(2)-H)(6)](+) are non-aromatic whereas [(H(t)Pa)(3)(μ(2)-H)(6)] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(H(t)Pa)(3)(μ(2)-H)(6)] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.  相似文献   
12.
We give an account of some recent advances in the development of ab initio methods for the calculation of molecular response properties, involving electric, magnetic, and geometric perturbations. Particular attention is given to properties in which the basis functions depend explicitly both on time and on the applied perturbations such as perturbations involving nuclear displacements or external magnetic fields when London atomic orbitals are used. We summarize a general framework based on the quasienergy for the calculation of arbitrary-order molecular properties using the elements of the density matrix in the atomic-orbital basis as the basic variables. We demonstrate that the necessary perturbed density matrices of arbitrary order can be determined from a set of linear equations that have the same formal structure as the set of linear equations encountered when determining the linear response equations (or time-dependent self-consistent-field equations). Additional components needed to calculate properties involving perturbation-dependent basis sets are flexible one- and two-electron integral techniques for geometric or magnetic-field differentiated integrals; in Kohn-Sham density-functional theory (KS-DFT), we also need to calculate derivatives of the exchange-correlation functional. We describe a recent proposal for evaluating these contributions based on automatic differentiation. Within this framework, it is now possible to calculate any molecular property for an arbitrary self-consistent-field reference state, including two- and four-component relativistic self-consistent-field wave functions. Examples of calculations that can be performed with this formulation are presented.  相似文献   
13.
Plasmons are resonant excitations in metallic films and nanoparticles. For small enough static distances of metal nanoparticles, additional plasmon-coupled modes appear as a collective excitation between the nanoparticles. Here we show, by combining poly(N-isopropylacrylamide) micro- and nanospheres and Au nanoparticles, how to design a system that allows controllably and reversibly switching on and off, and tuning the plasmon-coupled mode.  相似文献   
14.
15.
Anthracyclines are very effective against soft tissue sarcomas, with cardiotoxicity being an important side effect after repeated administration. To estimate the relative cardiotoxicity of various anthracyclines and their metabolites, we developed an isolated mouse left atrium model. To relate an effect of doxorubicin, 4'-epidoxorubicin and their four main metabolites (doxorubicinol, epidoxorubicinol and the aglycons 7-deoxydoxorubicinon and 7-deoxydoxorubicinolon) to concentrations in the tissue instead of the incubation bath, a method of quantifying the anthracyclines in small tissue samples was developed. Atria were homogenized by sonication followed by extraction of the anthracyclines with methanol. The extract was directly analyzed by high-performance liquid chromatography with fluorescence detection. Recoveries for the six compounds tested ranged from 67.5% for 4'-epidoxorubicin to 100.6% for 7-deoxydoxorubinol aglycon with coefficients of variation of 2-3% at two spiked concentrations (0.1 and 1 nmol/mg of tissue). The calibration plots were linear (r2 greater than 0.996) over the concentration range tested (0.05-1 nmol/mg wet weight). The limits of detection (4-10 pmol/mg of tissue) were low enough to allow the determination of the anthracyclines at all relevant tissue concentrations.  相似文献   
16.
The previously described route for the synthesis of the histamine H3 antagonist thioperamide 3 has been improved considerably. Furthermore, two straightforward novel synthetic routes towards 3 are described herein. The last synthetic route (Scheme 3) is preferable as it is very suitable for the production of multigram quantities of thioperamide 3.  相似文献   
17.
An attempt is made to improve the currently accepted muonic value for the 197Au nuclear quadrupole moment [+0.547(16)x10(-28) m2] for the 3/2+ nuclear ground state obtained by Powers et al. [Nucl. Phys. A230, 413 (1974)]. From both measured Mossbauer electric quadrupole splittings and solid-state density-functional calculations for a large number of gold compounds a nuclear quadrupole moment of +0.60x10(-28) m2 is obtained. Recent Fourier transform microwave measurements for gas-phase AuF, AuCl, AuBr, and AuI give accurate bond distances and nuclear quadrupole coupling constants for the 197Au isotope. However, four-component relativistic density-functional calculations for these molecules yield unreliable results for the 197Au nuclear quadrupole moment. Relativistic singles-doubles coupled cluster calculations including perturbative triples [CCSD(T) level of theory] for these diatomic systems are also inaccurate because of large cancellation effects between different field gradient contributions subsequently leading to very small field gradients. Here one needs very large basis sets and has to go beyond the standard CCSD(T) procedure to obtain any reliable field gradients for gold. From recent microwave experiments by Gerry and co-workers [Inorg. Chem. 40, 6123 (2001)] a significantly enhanced (197)Au nuclear quadrupole coupling constant in (CO)AuF compared to free AuF is observed. Here, these cancellation effects are less important, and relativistic CCSD(T) calculations finally give a nuclear quadrupole moment of +0.64x10(-28) m2 for 197Au. It is argued that it is currently very difficult to improve on the already published muonic value for the 197Au nuclear quadrupole moment.  相似文献   
18.
The coupled perturbed Kohn-Sham (CPKS) computational scheme for the evaluation of electric susceptibility tensors in periodic systems, recently implemented in the CRYSTAL code, has been extended to third-order. It is, then, used to obtain static electronic hyperpolarizabilities of zigzag BN nanotubes for the first time. This procedure, which is fully analytic in all key steps, requires a double self-consistent treatment for taking into account the first- and second-order response of the system to the applied field. The performance of different functionals is compared and the B3LYP hybrid is ultimately chosen for calculations on nanotubes having radii as large as R = 20 ? (6-200 atoms in the unit cell). Such large radii are sufficient to give the pure longitudinal component of the (hyper)polarizability tensors to within 1% of the "exact" hexagonal BN monolayer limit. Other tensor components involving the transverse direction converge more slowly. They can, however, be extrapolated to the monolayer limit to within 4% accuracy except for the pure transverse second hyperpolarizability, which has an error of 13% in that limit.  相似文献   
19.
The polyphenol quercetin (Q) that has a high antioxidant capacity is a lead compound in the design of antioxidants. We investigated the possibility of modifying quercetin while retaining its antioxidant capacity as much as possible. To this end, the antioxidant capacities of Q, rutin, monohydroxyethyl rutinoside (monoHER) and a series of synthesized methylated Q derivatives were determined. The results confirm that the electron donating effect of the hydroxyl groups is essential. It was also found that the relatively planar structure of Q needs to be conserved. This planar conformation enables the distribution of the electron donating effect through the large conjugated π-system over the entire molecule. This is essential for the cooperation between the electron donating groups. Based on the activity of the compounds tested, it was concluded that structural modification at the 5 or 7 position is the most optimal to retain most of the antioxidant capacity of Q. This was confirmed by synthesizing and testing Q5OMe (Q6) and Q7OMe (Q7) that indeed displayed antioxidant capacities closest to Q.  相似文献   
20.
We present the implementation and application of 4-component relativistic magnetically induced current density using London atomic orbitals for self-consistent field models. We obtain a magnetically balanced basis by a simple scheme where orbitals obtained by imposing restricted kinetic balance are extended by their unrestricted kinetic balance complement. The presented methodology makes it possible to analyze the concept of aromaticity based on the ring current criterion for closed-shell molecules across the periodic table and is independent of the choice of gauge origin. As a first illustration of the methodology we study plots of the magnetically induced current density and its divergence in the series C(5)H(5)E (E = CH, N, P, As, Sb, Bi) at the Kohn-Sham level, as well as integrated ring current susceptibilities, which we compare to previous results (R. Bast et al., Chem. Phys., 2009, 356, 187) obtained using a common gauge origin approach. We find that the current strength decreases monotonically along the series, but that all molecules qualify as aromatic according to the ring current criterion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号