首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   4篇
化学   34篇
数学   13篇
物理学   17篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2002年   4篇
  2001年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有64条查询结果,搜索用时 46 毫秒
11.
Fourier transform infrared and Fourier transform Raman spectra of 3-amino-1-phenyl-2-buten-1-one and its deuterated analogue were recorded in the regions 400-4,000 and 150-4,000 cm(-1), respectively. Furthermore, the molecular structure and vibrational frequencies of title compound were investigated by a series of density functional theoretical, DFT, and ab initio calculations at the post-Hartree-Fock (MP2) level. Although, the calculated frequencies are generally in agreement with the observed spectra but the DFT results are in much better quantitative agreement with the observed spectra than the MP2 results. The observed wavenumbers were analyzed and assigned to different normal modes of vibration of the molecule. The calculated geometrical parameters show a strong intramolecular hydrogen bond with a N...O distance of 2.621-2.668 A. This bond length is shorter than that of its parent, 4-amino-3-penten-2-one (with two methyl groups in the beta-position), which is in agreement with spectroscopic results. The topological properties of the electron density contributions for intramolecular hydrogen bond in 3-amino-1-phenyl-2-buten-1-one and 4-amino-3-penten-2-one have been analyzed in term of the Bader theory of atoms in molecules (AIM). These results also support the stronger hydrogen bond in the title compound with respect to the parent molecule.  相似文献   
12.
Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. In QSAR/QSPR study, physico-chemical properties and topological indices such as the Randi?, the atom-bond connectivity (ABC) and the geometric-arithmetic (GA) indices are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study poly honeycomb networks which are generated by a honeycomb network of dimension n and derive analytical closed results for the general Randi? index \(R_\alpha (G)\) for different values of \(\alpha \), for a David derived network \((\textit{DD}(n))\) of dimension n, a dominating David derived network \((\textit{DDD}(n))\) of dimension n as well as a regular triangulene silicate network of dimension n. We also compute the general first Zagreb, ABC, GA, \(\textit{ABC}_4\) and \(\textit{GA}_5\) indices for these poly honeycomb networks for the first time and give closed formulas of these degree based indices in case of poly honeycomb networks.  相似文献   
13.
The European Physical Journal C - We study the Yukawa model with one scalar and one axial scalar fields, coupled to N copies of Dirac fermions, in curved spacetime background. The theory possesses...  相似文献   
14.
Electroluminescence associated with impact excitation or ionization of deep Cr(2+) impurity centers in bulk ZnSe is reported. A broad signal of mid-infrared luminescence between 2 and 3 microm is observed once the biased bulk ZnSe device runs into a nonlinear conduction regime. Optical powers in the nanowatt range have been measured at room temperature. The different mechanisms involved in this intracenter infrared light emission are discussed.  相似文献   
15.
A theory of gas tungsten arc welding (GTAW) arcs that treats the tungsten electrode, the arc, and the workpiece as a unified system has been applied to make predictions in two dimensions of the temperature distributions in the arc, the tungsten cathode, and the workpiece, for any given arc current and gas mixture. Predictions of arc temperatures, radii, and voltages are compared for argon and mixtures of argon and hydrogen. It is found that arcs in gas mixtures containing hydrogen are more constricted and have a higher maximum temperature and arc voltage than arcs in pure argon. The addition of hydrogen also significantly increases the volume of molten material in the weld pool due to the higher thermal conductivity of argon-hydrogen mixtures at temperatures at which molecules of hydrogen dissociate. Predictions are also compared for workpieces of steel and aluminum. The volume of molten material is very much less for aluminum, despite its lower melting point, because of the higher thermal conductivity of aluminum. Predicted arc voltages as a function of current for a mixture of 10% hydrogen in argon are in good agreement with experimental results  相似文献   
16.
One-dimensional liquid chromatography (1D-LC) is not always capable of efficiently separating complex samples. This drawback is not solely due to the lack of column efficiency, but is mainly due to insufficient selectivity and the need to separate the analytes of interest with orthogonal retention mechanisms. In this regard, two-dimensional liquid chromatography (2D-LC) is currently attracting much interest for its markedly higher resolving power compared to one-dimensional separation. In this work, three applications of 2D-LC from the pharmaceutical industry are presented with the goal not only to increase peak capacity, but also to support investigations. In the first application, the retention times of peaks of interest are matched under different mobile phase conditions for the purpose of transferring the method from a mass spectrometry (MS) incompatible buffer to an MS compatible buffer. The second application includes developing a method for simultaneous detection and quantitation of degradants and aggregates in a biologics and small molecule combination product. The third application supports method development by confirming the purity of separated peaks using orthogonal separation conditions in the first and second dimensions and to investigate mass balance issues where some peaks are expected to elute in the solvent front.  相似文献   
17.
All the plausible conformations of β-aminoacrolein (AMAC) have been investigated by the Bekes-Lee-Yang-Parr (B3LYP) nonlocal density functional with extended 6-311++G** basis set for studying the stability order of conformers and the various possibilities of intramolecular hydrogen bonding formation. In general the ketoamine (KA) conformers of AMAC, by mean average, are more stable than the corresponding enolimine (EI) and ketoimine (KI) analogues and this stability is mainly due to the π-electron resonance in these conformers that established by NH2 functional group. The contribution of resonance to the stability of chelated KA conformers is about 75.6 kJ/mol, which is greater than that of the hydrogen bond energy (EHB=35.0 kJ/mol). The relative decreasing order of the various hydrogen bond energies was found to be: O–HNimine(strong)>Namine-HOketo (normal)>Nimine-HOhydroxyl (weak) > Nimine-HOketo (weak). Hydrogen bond energies for all systems were obtained from the method that we called related rotamers method (RRM). The topological properties of the electron density contributions for various type of intramolecular hydrogen bond have been analyzed in term of the Bader theory of atoms in molecules (AIM). The results of these calculations support the previous calculations, which obtained by the related rotamer methods.  相似文献   
18.
19.
Haidar Sabbagh  Byung Chan Eu 《Physica A》2010,389(12):2325-14045
In this paper, a molecular theory of self-diffusion coefficient is developed for polymeric liquids (melts) on the basis of the integral equation theory for site-site pair correlation functions, the generic van der Waals equation of state, and the modified free volume theory of diffusion. The integral equations supply the pair correlation functions necessary for the generic van der Waals equation of state, which in turn makes it possible to calculate the self-diffusion coefficient on the basis of the modified free volume theory of diffusion. A random distribution is assumed for minimum free volumes for monomers along the chain in the melt. More specifically, a stretched exponential is taken for the distribution function. If the exponents of the distribution function for minimum free volumes for monomers are chosen suitably for linear polymer melts of N monomers, the N dependence of the self-diffusion coefficient is N−1 for the small values of N, an exponent predicted by the Rouse theory, whereas in the range of 2.3?lnN?4.5 the N dependence smoothly crosses over to N−2, which is reminiscent of the exponent by the reptation theory. However, for lnN?4.5 the N dependence of the self-diffusion coefficient differs from N−2, but gives an N dependence, N−2−δ(0<δ<1), consistent with experiment on polymer melts in the range. For polyethylene δ≈0.48 for the parameters chosen for the stretched exponential. Because the stretched exponential function contains undetermined parameters, the N dependence of diffusion becomes semiempirical, but once the parameters are chosen such that the N dependence of D can be successfully given for a polymer melt, the temperature dependence of the self-diffusion coefficient can be well predicted in comparison with experiment. The theory is satisfactorily tested against experimental and simulation data on the temperature dependence of D for polyethylene and polystyrene melts.  相似文献   
20.
A series of six chemically treated and untreated fumed silicas with increasing particle size (ranging from the nano- to the micrometer size) was prepared. Surface areas (and morphologies) and surface energies were determined by nitrogen adsorption and inverse gas chromatography, respectively. The adsorption of a series of PDMS with different and well-defined molecular weights was studied at different polymer concentrations. Amounts of adsorbed polymer were determined by gravimetry and the energies of adsorption were assessed by flow-microcalorimetry. Results are discussed in terms of particle surface energy and morphology effects on the conformation and the inter-connectivity of adsorbed polymer molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号