首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   9篇
  国内免费   2篇
化学   70篇
晶体学   1篇
力学   5篇
数学   15篇
物理学   26篇
  2024年   1篇
  2023年   4篇
  2022年   13篇
  2021年   10篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   7篇
  2011年   6篇
  2010年   11篇
  2009年   5篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1991年   2篇
  1987年   1篇
  1971年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
81.
Bi-axial compressive stress induced as a result of mechanical confinement within a zirconium diboride-silicon carbide (ZrB2-SiC) ceramic composite has been quantified using micro Raman spectroscopy and then validated using two independent experimental methods. First a relationship relating the Raman peak-shift on a confined silicon carbide (SiC) particle to magnitude of imposed confinement stress was developed by utilizing phonon deformation potentials for 3C-SiC diamond and zinc-blende crystal structures. ZrB2-5wt%SiC samples, prepared using spark plasma sintering were subjected to different confinement pressure on the lateral surface by thermal shrink fitting metallic sleeves. The relationship between Raman peak-shift and confinement stress was then verified by comparing the measured stress in this method with that calculated from analytical expressions readily available for thick walled cylinders. The relationship was further validated independently using digital image correlation (DIC) by measuring the displacements for unknown levels of progressively increasing confinement stress induced by a shaft-collar ring on similar specimens. The Raman peak-shift relation derived for SiC phase also correctly predicted process-induced residual stresses due to a mismatch in coefficient of thermal expansion between the matrix phase and SiC particles. The derived Raman peak-shift relationship can also be generalized and can be a valuable tool to experimentally determine unknown bi-axial stress in a Raman active structure.  相似文献   
82.
Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry(XRD), scanning electron microscopy(SEM), and atomic force microscopy(AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers’ microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar(1 bar = 105Pa). A considerable increase in surface microhardness(approximately by a factor of 2) is observed for longer duration(10 h) and 2-mbar pressure. Longer duration(10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.  相似文献   
83.
The current study reports tailoring the electronic donor structures of organic dyes to modify their optical and nonlinear optical (NLO) response properties. Five (5) tri-phenyl amine (TPA) based Donor-π-Acceptor (D-π-A) organic dyes with the codes ICAA1 , ICAA2 , ICAA3 , ICAA4 , and ICAA5 were designed and investigated for their optical and NLO properties using quantum chemical methods. Optical and NLO properties of these dyes were studied by CAM-B3LYP method and 6-311G* basis set. The focus has been on the impact of adding secondary donors and shifting their substitutions at ortho (o), meta (m) and para (p) positions. Among all designed compounds, ICAA4 showed the highest amplitude of average third-order NLO polarizability <γ>, which is calculated to be 1316 × 10−36 esu. Time-dependent Density Functional Theory (TD-DFT) method was used to determine how a change in the position of the donor affected the excitation energy (Eg) and NLO response properties. The findings showed that changing the position of the secondary donor results in a red shift among absorption spectra as well as the increase in their NLO responses. Complete process of intramolecular charge transfer (ICT) has been investigated in terms of different optical parameters such as frontier molecular orbitals (FMOs), molecular electrostatic potentials (MEPs), transition density matrix (TDMs), density of states (DOS), electron density difference (EDD), and natural bond orbital (NBO) analysis. Our calculations for study of ICT process indicate that p-position of methoxy group performs better among all other positions and even it has better NLO response properties than the compound with three collective methoxy groups. The calculated Voc values of all designed molecules range from 1.09 to 1.30, all of them are positive while their ΔGinject is found to be in the range of −0.87 to −1.79 eV indicating their decent potential for photovoltaic applications. The studied optical, NLO and photovoltaic parameters illustrated that ICAA1 to ICAA5 are appropriate molecules not only for NLO applications but also for efficient photovoltaic purposes.  相似文献   
84.
Nanoparticles of solid solution Fe x Pt1?x , where 0.25≥x≥0 (?fcc lattice) with γ-Fe2O3 shell (lattice of the spinel type) were synthesised and characterised by high-resolution transmission electron microscopy, energy dispersive X-ray analysis, electron energy loss spectroscopy, Mössbauer spectroscopy and magnetometry. From the point of view of magnetic properties, such two-phase particles are interesting because their core is antiferromagnetic or paramagnetic (at very small values of x) whereas the shell is ferrimagnetic. The size of the particles was in the range of several nanometers. The Mössbauer measurements revealed a blocking temperature of about 100 K above which the particles are superparamagnetic. Towards lower temperatures, the magnetic characteristics of an ensemble of such particles show an increase of magnetic rigidity.  相似文献   
85.
This article introduces the global exponential multi switching combination synchronization (GEMSCS) for three different chaotic systems with known parameters in the master-slave system configuration. The proposed GEMSCS scheme establishes the global exponential stability of the synchronization error at the origin with different combinations of state variables of the two master chaotic systems with the state variables of a slave chaotic system in diverse manners. Consequently, it increases the complexity level of the information signal in secure communications. To study the GEMSCS, an efficient nonlinear control algorithm is designed. The Lyapunov direct theorem is used to accomplish the global exponential stability of the synchronization error at the origin. The stability conditions are derived analytically. To show the effectiveness and advantages of the proposed GEMSCS control approach, two numerical examples are presented. The computer based simulation results are compared with the reported works in the relevant literature. This article also extends the idea of GEMSCS to the secure communication using the chaotic masking technique. Using the GEMSCS strategy, the information signal is recovered at the receiving system with good accuracy and high speed while the parameters of the transmitter and receiver systems mismatch. At the end, some future research problems related to this work are suggested.  相似文献   
86.
The remarkably high intracellular concentration of reducing agents is an excellent endogenous stimulus for designing nanocarriers programmed for intracellular delivery of therapeutic agents. However, despite their excellent biodegradability profiles, aliphatic polyesters that are fully degradable in response to the intracellular reducing environment are rare. Herein, a reduction‐responsive drug delivery nanocarrier derived from a linear polyester bearing disulfide bonds is reported. The reduction‐responsive polyester is synthesized via a convenient polycondensation process. After conjugation of terminal carboxylic acid groups of polyester to polyethylene glycol (PEG), the resulting polymer self‐assembles into nanoparticles that are capable of encapsulating dye and anticancer drug molecules. The reduction‐responsive nanoparticles display a fast payload release rate in response to the intracellular reducing environment, which translates into superior anticancer activity towards PC‐3 cells.  相似文献   
87.
This research encompasses the use of noxious weed Parthenium hysterophorus as feedstock for pyrolysis carried out at varying temperatures of 300, 450 and 600°C. Temperature significantly affected the yield and properties of the pyrolysis products including char, syngas and bio-oil. Biochar yield decreased from 61% to 37% from 300 °C to 600 °C, whereas yield of gas and oil increased with increasing temperature. The pyrolysis products were physico-chemically characterized. In biochar, pH, conductivity, fixed carbon, ash content, bulk density and specific surface area of the biochar increased whereas cation exchange capacity, calorific value, volatile matter, hydrogen, nitrogen and oxygen content decreased with increasing temperature. Thermogravimetric analysis showed that the biochar prepared at higher temperature was more stable. Gas Chromatography-Mass Spectrometry analysis of biochar indicated the presence of alkanes, alkenes, nitriles, fatty acids, esters, amides and aromatic compounds. Number of compounds decreased with increasing temperature, but aromatic compounds increased with increasing temperature. Scanning electron micrographs of biochar prepared at different temperatures indicated micropore formation at lower temperature while increase in the size of pores and disorganization of vessels occurred at increasing temperature. The chemical composition was found to be richer at lower pyrolysis temperature. GC–MS analysis of the bio-oil indicated the presence of phenols, ketones, acids, alkanes, alkenes, nitrogenated compounds, heterocyclics and benzene derivatives.  相似文献   
88.
In this paper, we study the asymptotic behavior of solutions of semilinear abstract differential equations (*) u′(t) = Au(t) + t n f(t, u(t)), where A is the generator of a C 0-semigroup (or group) T(·), f(·, x) ∈ A for each xX, A is the class of almost periodic, almost automorphic or Levitan almost periodic Banach space valued functions ϕ: ℝ → X and n ∈ {0, 1, 2, ...}. We investigate the linear case when T(·)x is almost periodic for each xX; and the semilinear case when T(·) is an asymptotically stable C 0-semigroup, n = 0 and f(·, x) satisfies a Lipschitz condition. Also, in the linear case, we investigate (*) when ϕ belongs to a Stepanov class S p-A defined similarly to the case of S p-almost periodic functions. Under certain conditions, we show that the solutions of (*) belong to A u:= ABUC(ℝ, X) if n = 0 and to t n A uw n C 0 (ℝ, X) if n ∈ ℕ, where w n(t) = (1 + |t|)n. The results are new for the case n ∈ ℕ and extend many recent ones in the case n = 0. Dedicated to the memory of B. M. Levitan  相似文献   
89.
The photoelectrochemical response of nanoporous films, obtained by anodization of Ti and W substrates in a variety of corrosive media and at preselected voltages in the range from 10 to 60 V, was studied. The as-deposited films were subjected to thermal anneal and characterized by scanning electron microscopy and X-ray diffraction. Along with the anodization media developed by previous authors, the effect of poly(ethylene glycol) (PEG 400) or D-mannitol as a modifier to the NH4F electrolyte and glycerol addition to the oxalic acid electrolyte was studied for TiO2 and WO3, respectively. In general, intermediate anodization voltages and film growth times yielded excellent-quality photoelectrochemical response for both TiO2 and WO3 as assessed by linear-sweep photovoltammetry and photoaction spectra. The photooxidation of water and formate species was used as reaction probes to assess the photoresponse quality of the nanoporous oxide semiconductor films. In the presence of formate as an electron donor, the incident photon to electron conversion efficiency (IPCE) ranged from approximately 130% to approximately 200% for both TiO2 and WO3 depending on the film preparation protocol. The best photoactive films were obtained from poly(ethylene glycol) (PEG 400) containing NH4F for TiO2 and from aqueous NaF for WO3.  相似文献   
90.
Labelling of DTPA bicyclic anhydride coupled antibodies were investigated by determining the effect of DTPA: antibodies, DTPA: Sn molar ratios, pH, dimer and polymer formation of antibodies coupled with DTPA, using three different radionuclides, [111In,90Y and99mTc]. Analyses were performed with by Whatman No. 1 paper strips. Under optimal conditions we have achieved specific activities of111In or90Y labelled antibodies of about 37 kBq/1 g for IgG coupled with about 2 DTPA groups per molecule and protein concentration of 15 mg/ml.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号