首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2200篇
  免费   114篇
  国内免费   10篇
化学   1334篇
晶体学   12篇
力学   123篇
综合类   3篇
数学   433篇
物理学   419篇
  2023年   17篇
  2022年   16篇
  2021年   35篇
  2020年   40篇
  2019年   45篇
  2018年   65篇
  2017年   43篇
  2016年   71篇
  2015年   82篇
  2014年   107篇
  2013年   184篇
  2012年   157篇
  2011年   190篇
  2010年   114篇
  2009年   71篇
  2008年   151篇
  2007年   146篇
  2006年   114篇
  2005年   112篇
  2004年   79篇
  2003年   64篇
  2002年   73篇
  2001年   26篇
  2000年   30篇
  1999年   23篇
  1998年   12篇
  1996年   23篇
  1995年   14篇
  1994年   15篇
  1993年   14篇
  1992年   12篇
  1991年   6篇
  1990年   12篇
  1989年   8篇
  1988年   4篇
  1987年   8篇
  1986年   6篇
  1985年   14篇
  1984年   13篇
  1983年   6篇
  1982年   8篇
  1981年   9篇
  1980年   8篇
  1979年   11篇
  1978年   8篇
  1977年   7篇
  1976年   9篇
  1974年   6篇
  1973年   6篇
  1933年   3篇
排序方式: 共有2324条查询结果,搜索用时 15 毫秒
101.
The activation or heterolytic splitting of methane, a challenging substrate usually restricted to transition metals, has so far proven elusive in experimental frustrated Lewis pair (FLP) chemistry. In this article, we demonstrate, using density functional theory (DFT), that 1-aza-9-boratriptycene is a conceptually simple intramolecular FLP for the activation of methane. Systematic comparison with other FLP systems allows to gain insight into their reactivity with methane. The thermodynamics and kinetics of methane activation are interpreted by referring to the analysis of the natural charges and by employing the distortion-interaction/activation strain (DIAS) model. These showed that the nature of the Lewis base influences the selectivity over the reaction pathway, with N Lewis bases favoring the deprotonation mechanism and P bases the hydride abstraction one. The lower barrier of activation for 1-aza-9-boratriptycene and the higher products stability are due to a better interaction energy than its counterparts, itself due to electrostatic interactions with the methane moiety, favorable orbital overlaps allowed by the side-attack, and space proximity between the B and N atoms.  相似文献   
102.
In this work we explore the possibility to perform “effective energy” studies in very high energy collisions at the CERN large hadron collider (LHC). In particular, we focus on the possibility to measure in pp collisions the average charged multiplicity as a function of the effective energy with the ALICE experiment, using its capability to measure the energy of the leading baryons with the zero degree calorimeters. Analyses of this kind have been done at lower centre-of-mass energies and have shown that, once the appropriate kinematic variables are chosen, particle production is characterized by universal properties: no matter the nature of the interacting particles, the final states have identical features. Assuming that this universality picture can be extended to ion–ion collisions, as suggested by recent results from RHIC experiments, a novel approach based on the scaling hypothesis for limiting fragmentation has been used to derive the expected charged event multiplicity in AA interactions at LHC. This leads to scenarios where the multiplicity is significantly lower compared to most of the predictions from the models currently used to describe high energy AA collisions. A mean charged multiplicity of about 1000–2000 per rapidity unit (at η∼0) is expected for the most central Pb–Pb collisions at . In memory of A. Smirnitskiy  相似文献   
103.
Microfluidic particle focusing has been a vital prerequisite step in sample preparation for downstream particle separation, counting, detection, or analysis, and has attracted broad applications in biomedical and chemical areas. Besides all the active and passive focusing methods in Newtonian fluids, particle focusing in viscoelastic fluids has been attracting increasing interest because of its advantages induced by intrinsic fluid property. However, to achieve a well-defined focusing position, there is a need to extend channel lengths when focusing micrometer-sized or sub-microsized particles, which would result in the size increase of the microfluidic devices. This work investigated the sheathless viscoelastic focusing of particles and cells in a zigzag microfluidic channel. Benefit from the zigzag structure of the channel, the channel length and the footprint of the device can be reduced without sacrificing the focusing performance. In this work, the viscoelastic focusing, including the focusing of 10 μm polystyrene particles, 5 μm polystyrene particles, 5 μm magnetic particles, white blood cells (WBCs), red blood cells (RBCs), and cancer cells, were all demonstrated. Moreover, magnetophoretic separation of magnetic and nonmagnetic particles after viscoelastic pre-focusing was shown. This focusing technique has the potential to be used in a range of biomedical applications.  相似文献   
104.
A series of subphthalocyanines (SubPcs) bearing a carboxylic acid group either at the peripheral or axial position have been designed and synthesized to investigate the influence of the COOH group positions on the dye‐sensitized solar cell (DSSC) performance. The DSSC devices based on SubPcs with axially substituted carboxylic acid groups showed low photovoltaic performance, whereas peripherally substituted one exhibited higher power conversion efficiency owing to improved injection from LUMO of SubPcs to the TiO2 conduction band.  相似文献   
105.
Following our previous mechanistic studies of multicomponent Ugi‐type reactions, theoretical calculations have been performed to predict the efficiency of new substrates in Ugi–Smiles couplings. First, as predicted, 2,4,6‐trichlorophenol experimentally gave the corresponding aryl‐imidate. Theoretical predictions of nitrosophenols as good acidic partners were then successfully confirmed by experiments. In the latter case, the reaction offers a new access to benzimidazoles.  相似文献   
106.
We report a new tuneable alternating current (ac) electrohydrodynamics (ac‐EHD) force referred to as “nanoshearing” which involves fluid flow generated within a few nanometers of an electrode surface. This force can be externally tuned via manipulating the applied ac‐EHD field strength. The ability to manipulate ac‐EHD induced forces and concomitant fluid micromixing can enhance fluid transport within the capture domain of the channel (e.g., transport of analytes and hence increase target–sensor interactions). This also provides a new capability to preferentially select strongly bound analytes over nonspecifically bound cells and molecules. To demonstrate the utility and versatility of nanoshearing phenomenon to specifically capture cancer cells, we present proof‐of‐concept data in lysed blood using two microfluidic devices containing a long array of asymmetric planar electrode pairs. Under the optimal experimental conditions, we achieved high capture efficiency (e.g., approximately 90 %; % RSD=2, n=3) with a 10‐fold reduction in nonspecific adsorption of non‐target cells for the detection of whole cells expressing Human Epidermal Growth Factor Receptor 2 (HER2). We believe that our ac‐EHD devices and the use of tuneable nanoshearing phenomenon may find relevance in a wide variety of biological and medical applications.  相似文献   
107.
When finally processed to provide the function for which the latex was selected―binding, protecting, finishing―components such as surfactant, costabilizer or initiator become generally useless, not to say detrimental. In this study, we show that miniemulsion photopolymerization provides a suitable method to create latex without the apparent addition of these three compounds. Indeed, UV-driven monomer self-initiation can create initiating radicals without the aid of initiator, the fast in situ photogenerated polymer can hinder Ostwald ripening with the assistance of external costabilizer, and finally, UV-transparent clay can replace conventional surfactant to ensure colloidal stabilization. Each strategy has been developed individually before being combined together to end up with a unique miniemulsion procedure free of initiator, costabilizer and surfactant. Such approach paves the way to a simplified and environmentally improved pathway towards aqueous polymer dispersions.  相似文献   
108.
In situ exsolution of metal nanoparticles in perovskite under reducing atmosphere is employed to generate a highly active metal–oxide interface for CO2 electrolysis in a solid oxide electrolysis cell. Atomic-scale insight is provided into the exsolution of CoFe alloy nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ (LSCFM) by in situ scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy and DFT calculations. The doped Mo atoms occupy B sites of LSCFM, which increases the segregation energy of Co and Fe ions at B sites and improves the structural stability of LSCFM under a reducing atmosphere. In situ STEM measurements visualized sequential exsolution of Co and Fe ions, formation of CoFe alloy nanoparticles, and reversible exsolution and dissolution of CoFe alloy nanoparticles in LSCFM. The metal–oxide interface improves CO2 adsorption and activation, showing a higher CO2 electrolysis performance than the LSCFM counterparts.  相似文献   
109.
Abstract

We have developed original one-pot and protecting group-free approaches, which are also user-friendly and reliable, to synthesize nucleotides and derivatives starting from nucleoside 5’-monophosphates. Both methods present convenient set-up, i.e., non-dry solvents and reagents, substrates in their sodium or acid form, and commercially available and cheap phosphorus reagents as sodium and potassium salts.  相似文献   
110.
Localized surface plasmon resonance (LSPR) excitation on the photochromic reaction of a diarylethene derivative (DE) was studied by surface enhanced Raman scattering (SERS). UV and visible light irradiations transform reversibly DE between open-form (OF) and closed-form (CF) isomers, respectively. A mixture of PMMA and DE (either OF or CF isomer) was spin-coated onto gold nanorods (GNRs) arrays, designed by electron beam lithography, with two localized surface plasmon resonances (LSPR) at distinct wavelengths, due to their anisotropy. The photochromic reaction rates from CF to OF isomers, under LSPR excitation, were monitored from SERS spectral changes under different polarizations, on the same GNR substrate to compare the effect of LSPR field strength. It appears that the photoisomerization rate was faster when LSPR was excited with the polarization parallel to the GNR long axis. The present results highlight a potential genuine mechanism, from near field LSPR excitation, involved in the photochromic enhancement of diarylethene photochromes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号