首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   7篇
化学   129篇
晶体学   1篇
力学   5篇
数学   14篇
物理学   27篇
  2023年   3篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   7篇
  2015年   4篇
  2014年   2篇
  2013年   11篇
  2012年   9篇
  2011年   14篇
  2010年   9篇
  2009年   9篇
  2008年   11篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   13篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
61.
The design of charge separation sites under illumination in semiconductors is a standing challenge for their utilization as photo(electro)catalysts. Here, the synthesis of modified carbon nitride materials (CNs) with donor–acceptor (D–A) domains, with altering electronic structure, is reported. To do so, new monomers based on polycyclic aromatic hydrocarbons (PAH)-substituted 1,3,5-triazine were designed, which were then embedded within cyanuric acid–melamine supramolecular assemblies to form CN precursors. The conjugation degree of PAHs was systematically changed, from single benzene ring up to pyrene unit, elucidating the role of the conjugation degree on the morphology, structure and electronic properties as well as photo(electro)catalytic activity. The careful design of the D–A sites results in excellent photocatalytic activity as well as long-term stability for the hydrogen evolution reaction. Moreover, PAH–CNs films exhibit enhanced charge separation, optical absorption, electrochemical surface area and electronic conductivity, leading to an outstanding photoelectrochemical (PEC) activity compared to pristine CN.  相似文献   
62.
We have studied the possible structures of two-dimensional lattices composed of squares and equilateral triangles obtained by a coherent way of growing them. The model of growth uses the Stochastic Matrix Method, which is based on the concept of statistical agglomeration of elementary units. The studied lattices satisfy two conditions, they are free of voids and defects and they conserve the relative concentration of elementary units before and after the growth process. In order to compare our results with some specific tilings, we also define an algorithm to construct crystalline families of a given symmetry.  相似文献   
63.
64.
Phosphorus incorporation into carbon can greatly modify its chemical, electronic, and thermal stability properties. To date this has been limited to low levels of phosphorus. Now a simple, large‐scale synthesis of carbon–nitrogen–phosphorus (CNP) materials is reported with tunable elemental composition, leading to excellent thermal stability to oxidation and fire‐retardant properties. The synthesis consists of using monomers that are liquid at high temperatures as the reaction precursors. The molten‐state stage leads to good monomer miscibility and enhanced reactivity at high temperatures and formation of CNP materials with up to 32 wt % phosphorus incorporation. The CNP composition and fire‐retardant properties can be tuned by modifying the starting monomers ratio and the final calcination temperature. The CNP materials demonstrate great resistance to oxidation and excellent fire‐retardant properties, with up to 90 % of the materials preserved upon heating to 800 °C in air.  相似文献   
65.
Five-membered carbocycles are ubiquitously found in natural products, pharmaceuticals, and other classes of organic compounds. Within this category, cyclopentenes deserve special attention due to their prevalence as targets and as well as key intermediates for synthesizing more complex molecules. Herein, we offer an overview summarizing some significant recent advances in the catalytic assembly of this structural motif. A great variety of synthetic methodologies and strategies are covered, including transition metal-catalyzed or organocatalyzed processes. Both inter- and intramolecular transformations are documented. On this ground, our expertise in the application of C−H functionalization reactions oriented towards the formation of this ring and its subsequent selective functionalization is embedded.  相似文献   
66.
Selective functionalization of non-activated C(sp3)−H bonds is a major challenge in chemistry, so functional groups are often used to enhance reactivity. Here, we present a gold(I)-catalyzed C(sp3)−H activation of 1-bromoalkynes without any sort of electronic, or conformational bias. The reaction proceeds regiospecifically and stereospecifically to the corresponding bromocyclopentene derivatives. The latter can be readily modified, comprising an excellent library of diverse 3D scaffolds for medicinal chemistry. In addition, a mechanistic study has shown that the reaction proceeds via a so far unknown mechanism: a concerted [1,5]-H shift / C−C bond formation involving a gold-stabilized vinylcation-like transition state.  相似文献   
67.
68.
A dynamic‐covalent metal‐containing polymer was synthesized by the condensation of linear diamine and dialdehyde subcomponents around copper(I) templates in the presence of bidentate phosphine ligands. In solution, the red polymers undergo a sol–gel transition upon heating to form a yellow gel, a process that can be either reversible or irreversible depending on the solvent used. When fabricated into a light‐emitting electrochemical cell (LEC), the polymer emits infrared light at low voltage. As the voltage is increased, a blue shift in the emission wavelength is observed until yellow light is emitted, a process which is gradually reversed over time upon lowering the voltage. The mechanism underlying these apparently disparate responses is deduced to be due to loss of the copper phosphine complex from the polymer.  相似文献   
69.
Heat capacity measurements between 293 K and 363 K have been carried out in order to elucidate the different states appearing in 2-amino-2-methyl-1,3 propanediol (AMP) plastic crystal. The results allowed one of them to be identified as a glassy crystal. The changes of enthalpy, entropy and Gibbs free energy thermodynamic functions with temperature have been calculated from the experimental heat capacity values.  相似文献   
70.
The electronic structures of most semiconductor alloys are smooth functions of their composition. Binary alloys of group IV semiconductors are usually easy to prepare at any concentration, but this is not the case for the Ge1-xSnx alloy. Homogeneous alloys as required for nano- and optoelectronics device applications have proved difficult to form for x above a temperature-dependent critical concentration, above which Sn exhibits the tendency to segregate in the metallic cubic β phase, spoiling the semiconducting properties. The underlying mechanism for this segregation and critical concentration was not known.Through previous accurate ab initio local defect calculations we estimated the scale of energies involved in the immediate environment around a large number of Sn defects in Ge, the relaxed configurations of the defects, and the pressure directly related to the elastic field caused by the defects. This detailed information allowed us to build a simple statistical model including the defects most relevant at low x, namely substitutional α-Sn and non-substitutional β-Sn (in which a single atom occupies the centre of a Ge divacancy). Our model enables us to determine at which concentration β defects, which exhibit a tendency to segregate, can be formed in thermal equilibrium. These results coincide remarkably well with experimental findings, concerning the critical concentration above which the homogeneous alloys cannot be formed at room temperature. Our model also predicts the observed fact that at lower temperature the critical concentration increases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号