首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19160篇
  免费   3366篇
  国内免费   2347篇
化学   13520篇
晶体学   178篇
力学   1107篇
综合类   119篇
数学   2719篇
物理学   7230篇
  2024年   58篇
  2023年   412篇
  2022年   479篇
  2021年   638篇
  2020年   849篇
  2019年   759篇
  2018年   675篇
  2017年   630篇
  2016年   959篇
  2015年   903篇
  2014年   1056篇
  2013年   1435篇
  2012年   1676篇
  2011年   1769篇
  2010年   1242篇
  2009年   1110篇
  2008年   1265篇
  2007年   1116篇
  2006年   984篇
  2005年   892篇
  2004年   708篇
  2003年   620篇
  2002年   687篇
  2001年   545篇
  2000年   439篇
  1999年   431篇
  1998年   342篇
  1997年   311篇
  1996年   330篇
  1995年   291篇
  1994年   233篇
  1993年   163篇
  1992年   165篇
  1991年   158篇
  1990年   123篇
  1989年   94篇
  1988年   54篇
  1987年   56篇
  1986年   71篇
  1985年   47篇
  1984年   32篇
  1983年   26篇
  1982年   15篇
  1981年   11篇
  1980年   4篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1969年   1篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Using three different amino acids (AAs) as organic matrices, including the highly nonpolar hydrophobic l-valine, the positively charged l-arginine and the less polar uncharged l-serine, calcium carbonate (CaCO3) with different morphologies and polymorphs were synthesized by a facile gas diffusion reaction based on biomimetic strategy. Compared with the control cubic calcite obtained in the absence of AAs, the product from l-valine was cubic calcite aggregates assembled by nano-platelets. The product from l-arginine was spherical vaterite aggregates assembled by spherical nanoparticles. The product from l-serine was the mixture of cubic calcite and spherical vaterite. The structures and properties of the side chains of the AAs exerted the significant effects on the nucleation and growth of the CaCO3. The formation mechanisms of the CaCO3 in the presence of AAs are preliminarily discussed. The results suggest that the polymorphs and morphologies of the inorganic nanomaterials might be easily adjusted through the careful selection of the organic matrices.  相似文献   
962.
A novel dual-drug delivery system based on mesoporous-macroporous silica/polyelectrolytes-SBA-15 has been synthesized. The structure and composition of these materials were characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and N2 adsorption–desorption measurements. In this system, water-soluble metformin hydrochloride and fat-soluble ibuprofen were used as model drugs to study the controlled release behavior. The pH-controlled release of individual drugs was obtained by the primary release of metformin hydrochloride from polyelectrolytes-SBA-15 in acid condition and the predominant release of ibuprofen from MMC in alkaline environment. The results show that the polyelectrolytes-SBA-15/mesoporous-macroporous silica can be used as dual-drug release system and the individual drug can be controlled release with the change of pH value of the environment.  相似文献   
963.
Ultrafine tetragonal BaTiO3 nanocrystals have been prepared by a sol–gel based method. By adjusting the volume ratio of H2O/DEG (diethylene glycol) in the solutions, hydrolysis rate of tetra-n-butyl titanate was strongly inhibited and the particle size could be controlled as small as 4–8 nm. The powder X-ray diffraction and transmission electron microscopy characterizations exhibit that the nanocrystals are spherical and well crystallized. The Raman spectrum shows the products are composed of the orthorhombic phase and tetragonal phase. The Fourier transform infrared spectrum revealed that a surface modification layer was formed around the BaTiO3 nanocrystals, which can prevent them from aggregation and help to form a stable, high solid content sol.  相似文献   
964.
An in situ two-step processing using an initial acid catalysis step accompanied by an epoxide-mediated condensation step in the presence of ammonium chloride (NH4Cl) is reported, and macroporous cocontinuous methylsilsesquioxane (MSQ) monoliths have been successfully prepared by this processing. We explain the hydrolysis, gelation behavior and phase separation of MTMS(methyltrimethoxysilane)-MeOH(methanol)-HCl-PO(propylene oxide) system and the in situ effect of NH4Cl, and examine the macroporous morphology and pore structures of MSQ monoliths obtained under different conditions. Macroporous MSQ monolith under optimized conditions possesses a narrow macropore size distribution between 3 to 10 μm, surface area as high as 366 m2·g?1 and minimal shrinkage of only 1 %.  相似文献   
965.
966.
A new catalyst consisting of ionic liquid (IL)‐functionalized carbon nanotubes (CNTs) obtained through 1,3‐dipolar cycloaddition support‐enhanced electrocatalytic Pd nanoparticles (Pd@IL(Cl?)‐CNTs) was successfully fabricated and applied in direct ethanol alkaline fuel cells. The morphology, structure, component and stability of Pd@IL(Cl?)‐CNTs were systematic characterized by transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), Raman spectra, thermogravimetric analysis (TGA) and X‐ray diffraction (XRD). The new catalyst exhibited higher electrocatalytic activity, better tolerance and electrochemical stability than the Pd nanoparticles (NPs) immobilized on CNTs (Pd@CNTs), which was ascribed to the effects of the IL, larger electrochemically active surface area (ECSA), and greater processing performance. Cyclic voltammograms (CVs) at various scan rates illustrated that the oxidation behaviors of ethanol at all electrodes were controlled by diffusion processes. The investigation of the different counteranions demonstrated that the performance of the IL‐CNTs hybrid material was profoundly influenced by the subtly varied structures of the IL moiety. All the results indicated that the Pd@IL(Cl?)‐CNTs catalyst is an efficient anode catalyst, which has potential applications in direct ethanol fuel cells and the strategy of IL functionalization of CNTs could be available to prepare other carbonaceous carrier supports to enhance the dispersivity, stability, and catalytic performance of metal NPs as well.  相似文献   
967.
Two kinds of inorganic gadolinium(III)‐hydroxy “ladders”, [2×n] and [3×n], were successfully trapped in succinate (suc) coordination polymers, [Gd2(OH)2(suc)2(H2O)]n ? 2n H2O ( 1 ) and [Gd6(OH)8(suc)5(H2O)2]n ? 4n H2O ( 2 ), respectively. Such coordination polymers could be regarded as alternating inorganic–organic hybrid materials with relatively high density. Magnetic and heat capacity studies reveal a large cryogenic magnetocaloric effect (MCE) in both compounds, namely (ΔH=70 kG) 42.8 J kg?1 K?1 for complex 1 and 48.0 J kg?1 K?1 for complex 2 . The effect of the high density is evident, which gives very large volumetric MCEs up to 120 and 144 mJ cm?3 K?1 for complexes 1 and 2 , respectively.  相似文献   
968.
Microporous vanadosilicates with octahedral VO6 and tetrahedral SiO4 units, better known as AM‐6, have been hydrothermally synthesized with different morphologies by controlling the Na/K molar ratio of the initial gel mixtures. The morphology of the AM‐6 materials changed from bulky cube to nanofiber aggregates as the Na/K molar ratio decreased from 1.9 to 0.2. Raman spectroscopy revealed that the VO3? intermediate species plays an important role in the formation of the nanofiber morphology. The orientation of ‐V‐O‐V‐ chains in nanofiber aggregates was examined by confocal polarized micro‐Raman spectroscopy. It was found that these aggregates are assemblies of short ‐V‐O‐V‐ chains perpendicular to the axis of nanofibers. The obtained AM‐6 nanofibers greatly increase the exposed proportion of V? O terminals, and thus improve the catalytic performance.  相似文献   
969.
The cathodic reactions in Li–S batteries can be divided into two steps. Firstly, elemental sulfur is transformed into long‐chain polysulfides (S8?Li2S4), which are highly soluble in the electrolyte. Next, long‐chain polysulfides undergo nucleation reaction and convert into solid‐state Li2S2 and Li2S (Li2S4?Li2S) by slow processes. As a result, the second‐step of the electrochemical reaction hinders the high‐rate application of Li–S batteries. In this report, the kinetics of the sulfur/long‐chain‐polysulfide redox couple (theoretical capacity=419 mA h g?1) are experimentally demonstrated to be very fast in the Li–S system. A Li–S cell with a blended carbon interlayer retains excellent cycle stability and possesses a high percentage of active material utilization over 250 cycles at high C rates. The meso‐/micropores in the interlayer are responsible for accommodating the shuttling polysulfides and offering sufficient electrolyte accessibility. Therefore, utilizing the sulfur/long‐chain polysulfide redox couple with an efficient interlayer configuration in Li–S batteries may be a promising choice for high‐power applications.  相似文献   
970.
We have demonstrated a rapid and general strategy to synthesize novel three‐dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as‐prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as‐synthesized three‐dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well‐defined sponge‐like network, large‐scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen‐gas sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号