首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63796篇
  免费   13322篇
  国内免费   4974篇
化学   60920篇
晶体学   703篇
力学   2035篇
综合类   276篇
数学   5723篇
物理学   12435篇
  2024年   60篇
  2023年   518篇
  2022年   749篇
  2021年   1059篇
  2020年   2179篇
  2019年   3448篇
  2018年   1854篇
  2017年   1474篇
  2016年   4428篇
  2015年   4609篇
  2014年   4733篇
  2013年   5882篇
  2012年   5255篇
  2011年   4801篇
  2010年   4581篇
  2009年   4511篇
  2008年   4274篇
  2007年   3487篇
  2006年   3028篇
  2005年   2996篇
  2004年   2505篇
  2003年   2185篇
  2002年   2903篇
  2001年   2136篇
  2000年   1906篇
  1999年   1006篇
  1998年   615篇
  1997年   519篇
  1996年   566篇
  1995年   463篇
  1994年   424篇
  1993年   381篇
  1992年   359篇
  1991年   311篇
  1990年   266篇
  1989年   208篇
  1988年   182篇
  1987年   152篇
  1986年   159篇
  1985年   169篇
  1984年   104篇
  1983年   70篇
  1982年   78篇
  1981年   58篇
  1980年   55篇
  1979年   60篇
  1978年   40篇
  1976年   37篇
  1974年   41篇
  1973年   45篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Transition‐metal complexes containing stimuli‐responsive systems are attractive for applications in optical devices, photonic memory, photosensing, as well as luminescence imaging. Amongst them, photochromic metal complexes offer the possibility of combining the specific properties of the metal centre and the optical response of the photochromic group. The synthesis, the electrochemical properties and the photophysical characterisation of a series of donor–acceptor azobenzene derivatives that possess bipyridine groups connected to a 4‐dialkylaminoazobenzene moiety through various linkers are presented. DFT and TD‐DFT calculations were performed to complement the experimental findings and contribute to their interpretation. The position and nature of the linker (ethynyl, triazolyl, none) were engineered and shown to induce different electronic coupling between donor and acceptor in ligands and complexes. This in turn led to strong modulations in terms of photoisomerisation of the ligands and complexes.  相似文献   
42.
In the present work we describe a two‐dimensional liquid chromatographic system (2D‐LC) with detection by mass spectrometry (MS) for the simultaneous separation of endogenous metabolites of clinical interest and excreted xenobiotics deriving from exposure to toxic compounds. The 2D‐LC system involves two orthogonal chromatographic modes, hydrophilic interaction liquid chromatography (HILIC) to separate polar endogenous metabolites and reversed‐phase (RP) chromatography to separate excreted xenobiotics of low and intermediate polarity. Additionally, the present proposal has the novelty of incorporating an on‐line sample treatment based on the use of restricted access materials (RAMs), which permits the direct injection of urine samples into the system. The work is focused on the instrumental coupling, studying all possible options and attempting to circumvent the problems of solvent incompatibility between the RAM device and the two chromatographic columns, HILIC and RP. The instrumental configuration developed, RAM‐HILIC‐RPLC‐MS/MS, allows the simultaneous assessment of urinary metabolites of clinical interest and excreted compounds derived from exposure to toxic agents with minimal sample manipulation. Thus, it may be of interest in areas such as occupational and environmental toxicology in order to explore the possible relationship between the two types of compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
43.
44.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
45.
Fully utilizing solar energy for catalysis requires the integration of conversion mechanisms and therefore delicate design of catalyst structures and active species. Herein, a MOF crystal engineering method was developed to controllably synthesize a copper–ceria catalyst with well-dispersed photoactive Cu-[O]-Ce species. Using the preferential oxidation of CO as a model reaction, the catalyst showed remarkably efficient and stable photoactivated catalysis, which found practical application in feed gas treatment for fuel cell gas supply. The coexistence of photochemistry and thermochemistry effects contributes to the high efficiency. Our results demonstrate a catalyst design approach with atomic or molecular precision and a combinatorial photoactivation strategy for solar energy conversion.  相似文献   
46.
The modulation of electron density is an effective option for efficient alternative electrocatalysts. Here, p‐n junctions are constructed in 3D free‐standing FeNi‐LDH/CoP/carbon cloth (CC) electrode (LDH=layered double hydroxide). The positively charged FeNi‐LDH in the space‐charge region can significantly boost oxygen evolution reaction. Therefore, the j at 1.485 V (vs. RHE) of FeNi‐LDH/CoP/CC achieves ca. 10‐fold and ca. 100‐fold increases compared to those of FeNi‐LDH/CC and CoP/CC, respectively. Density functional theory calculation reveals OH? has a stronger trend to adsorb on the surface of FeNi‐LDH side in the p‐n junction compared to individual FeNi‐LDH further verifying the synergistic effect in the p‐n junction. Additionally, it represents excellent activity toward water splitting. The utilization of heterojunctions would open up an entirely new possibility to purposefully regulate the electronic structure of active sites and promote their catalytic activities.  相似文献   
47.
We report on the first examples of isolated silanol–silanolate anions, obtained by utilizing weakly coordinating phosphazenium counterions. The silanolate anions were synthesized from the recently published phosphazenium hydroxide hydrate salt with siloxanes. The silanol–silanolate anions are postulated intermediates in the hydroxide‐mediated polymerization of aryl and alkyl siloxanes. The silanolate anions are strong nucleophiles because of the weakly coordinating character of the phosphazenium cation, which is perceptible in their activity in polysiloxane depolymerization.  相似文献   
48.
49.
We describe the synthesis and the physical properties of polyaromatic hydrocarbons (PAHs) containing a phosphorus atom at the edge. In particular, the impact of the successive addition of aromatic rings on the electronic properties was investigated by experimental (UV/Vis absorption, fluorescence, cyclic voltammetry) and theoretical studies (DFT). The physical properties recorded in solution and in the solid state showed that the P‐containing PAHs exhibit properties expected for an emitter in white organic light‐emitting diodes (WOLEDs).  相似文献   
50.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号