首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   3篇
化学   28篇
数学   1篇
物理学   4篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   5篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2006年   1篇
排序方式: 共有33条查询结果,搜索用时 0 毫秒
31.
Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts.  相似文献   
32.
A series of 8,9-dihydro-2-(2-oxo-2H-chromen-3-yl)-5-aryl-3/f-chromeno[2,3-(flpyrimidine-4,6(5ff,7//)-diones(5a-j) have been synthesized by the reaction of 2-amino-5,6,7,8-tetrahydro-5-oxo-4-aryl-4#-chromene-3-carbonitrile(4a-j) with couma-rin -3-catboxylic acid under neat conditions employing Br0nsted acidic ionic liquid(4-sulfobutyl)tris(4-sulfophenyl)phosphonium hydrogen sulfate as catalyst.Structures of all the compounds were established on the basis of analytical and spectroscopic data.All the compounds were evaluated for their in vitro antimicrobial activity against different bacterial and fungal strains.  相似文献   
33.
Raman spectroscopy can differentiate the spectral fingerprints of many molecules, resulting in potentially high multiplexing capabilities of Raman‐tagged nanoparticles. However, an accurate quantitative unmixing of Raman spectra is challenging because of potential overlaps between Raman peaks from each molecule, as well as slight variations in the location, height, and width of very narrow peaks. If not accounted for properly, even minor fluctuations in the spectra may produce significant error that will ultimately result in poor unmixing accuracy. The objective of our study was to develop and validate a mathematical model of the Raman spectra of nanoparticles to unmix the contributions from each nanoparticle allowing simultaneous quantitation of several nanoparticle concentrations during sample characterization. We developed and evaluated an algorithm for quantitative unmixing of the spectra called narrow peak spectral algorithm (NPSA). Using NPSA, we were able to successfully unmix Raman spectra of up to seven Raman nanoparticles after correcting for spectral variations of 30% intensity and shifts in peak locations of up to 10 cm−1, which is equivalent to 50% of the full width at half maximum (FWHM). We compared the performance of NPSA to the conventional least squares (LS) analysis. Error in the NPSA is approximately 50% lower than in the LS. The error in estimating the relative contributions of each nanoparticle with the use of the NPSA are in the range of 10–16% for equal ratios and 13–19% for unequal ratios for the unmixing of seven composite organic–inorganic nanoparticles (COINs); whereas, the errors from using the traditional LS approach were in the range of 25–38% for equal ratios and 45–68% for unequal ratios. Here, we report for the first time the quantitative unmixing of seven nanoparticles with a maximum root mean square of the percentage error (RMS%) error of less than 20%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号