首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   737篇
  免费   14篇
  国内免费   2篇
化学   558篇
晶体学   15篇
力学   15篇
数学   64篇
物理学   101篇
  2023年   6篇
  2022年   8篇
  2021年   7篇
  2020年   15篇
  2019年   8篇
  2018年   10篇
  2017年   7篇
  2016年   16篇
  2015年   17篇
  2014年   9篇
  2013年   46篇
  2012年   39篇
  2011年   42篇
  2010年   19篇
  2009年   22篇
  2008年   50篇
  2007年   34篇
  2006年   44篇
  2005年   26篇
  2004年   33篇
  2003年   15篇
  2002年   18篇
  2001年   13篇
  2000年   13篇
  1999年   10篇
  1998年   5篇
  1997年   7篇
  1996年   10篇
  1995年   9篇
  1994年   9篇
  1993年   9篇
  1992年   6篇
  1991年   8篇
  1990年   10篇
  1989年   11篇
  1988年   10篇
  1987年   8篇
  1985年   12篇
  1984年   12篇
  1983年   4篇
  1982年   11篇
  1981年   13篇
  1980年   9篇
  1979年   14篇
  1978年   4篇
  1977年   4篇
  1975年   6篇
  1974年   3篇
  1973年   7篇
  1964年   4篇
排序方式: 共有753条查询结果,搜索用时 92 毫秒
141.
A C-rich PNA hexanucleotide, p(C5T), has been shown to form an i-motif by nanoelectrospray ionization mass spectrometry coupled with H/D exchange, to have thermal stability comparable with its DNA analogue, but to exist over a much narrower pH range.  相似文献   
142.
In the title compounds, C5H6N5+·C8H7O2·C8H8O2·H2O, (I), and C5H6N5+·C4H3O4·H2O, (II), the adeninium cations form N—H...O hydrogen bonds with their anion counterparts and adeninium–adeninium self‐association base pairs with the R22(10) motif (Bernstein et al., 1995). A complete hydrogen‐bonding motif analysis is presented. Conventional hydrogen bonds lead to layer structures in (I) and to two‐dimensional infinite polymeric ribbons in (II). C—H...O interactions are found in both structures, while weak π–π stacking interactions are only observed in (I).  相似文献   
143.
Subchalcogenides are uncommon, and their chemical bonding results from an interplay between metal–metal and metal–chalcogenide interactions. Herein, we present Ir6In32S21, a novel semiconducting subchalcogenide compound that crystallizes in a new structure type in the polar P31m space group, with unit cell parameters a = 13.9378(12) Å, c = 8.2316(8) Å, α = β = 90°, γ = 120°. The compound has a large band gap of 1.48(2) eV, and photoemission and Kelvin probe measurements corroborate this semiconducting behavior with a valence band maximum (VBM) of −4.95(5) eV, conduction band minimum of −3.47(5) eV, and a photoresponse shift of the Fermi level by ∼0.2 eV in the presence of white light. X-ray absorption spectroscopy shows absorption edges for In and Ir do not indicate clear oxidation states, suggesting that the numerous coordination environments of Ir6In32S21 make such assignments ambiguous. Electronic structure calculations confirm the semiconducting character with a nearly direct band gap, and electron localization function (ELF) analysis suggests that the origin of the gap is the result of electron transfer from the In atoms to the S 3p and Ir 5d orbitals. DFT calculations indicate that the average hole effective masses near the VBM (1.19me) are substantially smaller than the average electron masses near the CBM (2.51me), an unusual feature for most semiconductors. The crystal and electronic structure of Ir6In32S21, along with spectroscopic data, suggest that it is neither a true intermetallic nor a classical semiconductor, but somewhere in between those two extremes.

Subchalcogenides are uncommon, and their chemical bonding results from an interplay between metal–metal and metal–chalcogenide interactions.  相似文献   
144.
Photosensitized oxidation of the eye lens proteins, the crystallins, is thought to lead to protein crosslinks and high molecular weight aggregates. Such protein modifications may be important factors in the formation of lens opacities or cataracts. We focus attention here on type 2 photo-oxidation involving the reaction of singlet oxygen (1O2) with crystallins and some "control" proteins. We find that: (1) trp residues are oxidized to N-formyl kynurenine and related products, but this in itself does not lead to the production of high molecular weight protein aggregates of the protein; (2) tyr residues react with 1O2 but we do not detect dihydroxyphenylalanine or bityrosine nor are protein crosslinks formed as a result; (3) oxidation of his residues appears necessary for high molecular weight protein covalent aggregates to form. Proteins devoid of his, e.g. melittin or bovine pancreatic trypsin inhibitor, do not form high molecular weight products upon reaction with 1O2. Prior reaction and blocking of his inhibits the crosslinking reactions. (4) The oxidized protein is seen to be more acidic than the parent and has an altered tertiary structure. (5) Among the crystallins, reactivity towards 1O2 varies in the order gamma greater than beta greater than alpha and also gamma A/E greater than gamma D greater than gamma B crystallin.  相似文献   
145.
Car-Parrinello molecular-dynamics simulations of supercritical carbon dioxide (scCO(2)) have been performed at the temperature of 318.15 K and at the density of 0.703 g/cc in order to understand its microscopic structure and dynamics. Atomic pair correlation functions and structure factors have been obtained and good agreement has been found with experiments. In the supercritical state the CO(2) molecule is marginally nonlinear, and thus possesses a dipole moment. Analyses of angle distributions between near neighbor molecules reveal the existence of configurations with pairs of molecules in the distorted T-shaped geometry. The reorientational dynamics of carbon dioxide molecules, investigated through first- and second-order time correlation functions, exhibit time constants of 620 and 268 fs, respectively, in good agreement with nuclear magnetic resonance experiments. The intramolecular vibrations of CO(2) have been examined through an analysis of the velocity autocorrelation function of the atoms. These reveal a red shift in the frequency spectrum relative to that of an isolated molecule, consistent with experiments on scCO(2). The results have also been compared to classical molecular-dynamics calculations employing an empirical potential.  相似文献   
146.
Dielectric relaxation of aqueous solutions of micelles, proteins, and many complex systems shows an anomalous dispersion at frequencies intermediate between those corresponding to the rotational motion of bulk water and that of the organized assembly or macromolecule. The precise origin of this anomalous dispersion is not well-understood. In this work we employ large scale atomistic molecular dynamics simulations to investigate the dielectric relaxation (DR) of water molecules in an aqueous micellar solution of cesium pentadecafluorooctanoate. The simulations clearly show the presence of a slow component in the moment-moment time correlation function [PhiMW(t)] of water molecules, with a time constant of about 40 ps, in contrast to only 9 ps for bulk water. Interestingly, the orientational time correlation function [Cmu(t)] of individual water molecules at the surface exhibits a component with a time constant of about 19 ps. We show that these two time constants can be related by the well-known micro-macrorelations of statistical mechanics. In addition, the reorientation of surface water molecules exhibits a very slow component that decays with a time constant of about 500 ps. An analysis of hydrogen bond lifetime and of the rotational relaxation in the coordinate frame fixed on the micellar body seems to suggest that the 500 ps component owes its origin to the existence of an extended hydrogen bond network of water molecules at the surface. However, this ultraslow component is not found in the total moment-moment time correlation function of water molecules in the solution. The slow DR of hydration water is found to be well correlated with the slow solvation dynamics of cesium ions at the water-micelle interface.  相似文献   
147.
This paper describes the reaction of the phosphine-protected Au nanoparticle Au(55)(PPh(3))(12)Cl(6) (1, "Au55") with hexanethiol (2) and other thiols. The voltammetry of the reaction product 2 displays a well-defined pattern of peaks qualitatively reminiscent of Au(38) nanoparticles, but with quite different spacing (0.74 +/- 0.01 V) between the potentials of initial oxidation and reduction steps (electrochemical gap). Correction of this "molecule-like" gap for charging energy indicates a HOMO-LUMO gap energy of about 0.47 V. Voltammetry of the products (3 and 4) of reaction of 1 with C(3)H(7)SH and PhC(2)H(4)SH, respectively, is similar. Laser desorption/ionization mass spectrometry (LDI-MS) shows that 2 contains a high proportion of a core mass in the 14-15 kDa range, which is proposed to be Au(75). UV-vis spectra of 2-4 are relatively featureless, similar to previous reports of thiolate-protected Au(75) nanoparticles. HPLC analysis of 2 shows a Au(75) content of ca. 73%; the electrochemical purity estimate is also high, about 55%. Combining the mass spectrometric result with thermogravimetric analysis of 2 leads to a preliminary formulation Au(75)(SC(6)H(13))(40). This Au(75) synthesis complements a previous Brust-type synthesis and is unusual in the apparent provocation in the reaction of an increase in core size.  相似文献   
148.
A general method is outlined to enumerate the edge-colorings of graphs under group action. The symmetry group of the graph acting on the vertices induces permutation of the edges. The edge-colorings are enumerated using the edge-permutation group. A number of chemical applications especially to multiple quantum NMR spectroscopy, statistical mechanics, enumeration of unsaturated isomers, etc. are considered.Alfred P. Sloan fellow; Camille and Henry Dreyfus teacher-scholar  相似文献   
149.
The electro-initiated polymerization of acrylonitrile initiated by the anodic oxidation of an aqueous acid solution (80% HOAc + 20% H2O) containing Mn(OAc)2 · 4H2O/CNCH2COOH has been investigated in the 30–40°C temperature range. The kinetics and mechanism of the process has been investigated as a function of variables and a suitable mechanism proposed. From the experimental observations the rate of polymerization is seen to be proportional to [An]1.5I0.5[Mn+2]0.5 and [CAA]0.5. The rate of polymerization gradually decreases at a higher applied current. The rate was independent of [CAA]0.5. The rate of polymerization gradually decreases at a higher applied current. The rate was independent of CAA at high concentration. The average degrees of polymerization (P n) increases with increasing AN and decreasing [CAA], [Mn+2] and applied current, I. The initiation is due to the anodic oxidation of Mn+2–CNCH2COOH complex. Both the initiation of polymerization by the primary radical, viz., CN? C?? COOH as well as the oxidation of the primary radical at the electrode are equally significant reactions and neither can be neglected in comparison with the other. Predominant mutual termination accounts for all the observed data.  相似文献   
150.
Abstract— The cornea is a transparent ocular tissue and its transparency is thought to be a result of intramolecular interactions and the supramolecular organization of its protein constituents. We have studied the intrinsic fluorescence properties of intact bovine corneas and compared these with that of the opaque sclera. It was observed that with increasing excitation wavelengths the emission maxima shifted toward the red edge exhibiting the phenomenon of red edge excitation shift, which is indicative of immobilization of the constituent fluorophores. The magnitude of the shift increased after photodamage by irradiation at 295 nm. Many of the spectral characteristics of the cornea are shown to be due to its proteoglycans, which show surprisingly significant red edge excitation shift in solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号