首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   7篇
化学   131篇
晶体学   1篇
力学   22篇
数学   16篇
物理学   81篇
  2022年   3篇
  2020年   6篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2015年   4篇
  2014年   7篇
  2013年   16篇
  2012年   15篇
  2011年   13篇
  2010年   11篇
  2009年   7篇
  2008年   6篇
  2007年   10篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1995年   3篇
  1994年   4篇
  1993年   11篇
  1992年   6篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   8篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1979年   8篇
  1978年   2篇
  1977年   6篇
  1976年   6篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
131.
A high-conducting salt-doped polymer electrolyte layer has been created here for use in photocell technologies. The solution casting method is used to produce ion conducting film where poly (methyl methacrylate) (PMMA) is used as the host polymer and potassium iodide (KI) as the dopant. The conductivity and amorphic increases of the polymer electrolytes with the addition of salt concentrations helps in the enhancement of the charge transfer properties. Using electrochemical impedance spectroscopy (EIS), ionic conductivity is evaluated where maximum conductivity is 3.99 × 10−6 S cm-1 at 20 wt% KI concentration. Polarized optical microscopy (POM) shows the reduction in crystallinity by salt doping, while Fourier transforms infrared spectroscopy (FTIR) shows the complexation as well as composite nature of the film. Ionic transference number (tion) measurement shows the predominantly ionic nature of this polymer electrolyte.  相似文献   
132.
Many NMR and MRI methods probe fluid dynamics within macro- and mesoporous materials, but with few exceptions, they report on its macroscopically averaged properties. MRI methods are generally unable to localize microscopic features of flow within macroscopic samples because the fraction of the enclosing detector volume occupied by these features is so small. We have recently overcome this problem using remotely detected MRI velocimetry, a technique in which spatial, chemical, and velocity information about elements of the flow is encoded with a conventional NMR coil and detected sensitively at the sample outflow by a volume-matched microdetector. Here, we apply this method to microporous model systems, recording MRI images that correlate local velocity, spin relaxation, and time-of-flight in microscopic resolution and three spatial dimensions. Our results illustrate that remotely detected MRI is an effective approach to elucidate flow dynamics in porous materials including bead pack microreactors and chromatography columns.  相似文献   
133.
Abstract

“Thickeners” [1,2] used in textile printing are high molecular weight compounds, giving viscous pastes in water. These impart stickiness and plasticity to the printing paste so that it can be applied to a fabric surface without spreading and be capable of maintaining the design outlines even under high pressure. Their main function is to hold or adhere the dye particles in the desired place on the fabric until the transfer of dye into the fabric and its fixation are complete.  相似文献   
134.
A hereditary model and a fractional derivative model for the dynamic properties of flexible polyurethane foams used in automotive seat cushions are presented. Non-linear elastic and linear viscoelastic properties are incorporated into these two models. A polynomial function of compression is used to represent the non-linear elastic behavior. The viscoelastic property is modelled by a hereditary integral with a relaxation kernel consisting of two exponential terms in the hereditary model and by a fractional derivative term in the fractional derivative model. The foam is used as the only viscoelastic component in a foam-mass system undergoing uniaxial compression. One-term harmonic balance solutions are developed to approximate the steady state response of the foam-mass system to the harmonic base excitation. System identification procedures based on the direct non-linear optimization and a sub-optimal method are formulated to estimate the material parameters. The effects of the choice of the cost function, frequency resolution of data and imperfections in experiments are discussed. The system identification procedures are also applied to experimental data from a foam-mass system. The performances of the two models for data at different compression and input excitation levels are compared, and modifications to the structure of the fractional derivative model are briefly explored. The role of the viscous damping term in both types of model is discussed.  相似文献   
135.
Molecular imaging based on saturation transfer in exchanging systems is a tool for amplified and chemically specific magnetic resonance imaging. Xenon-based molecular sensors are a promising category of molecular imaging agents in which chemical exchange of dissolved xenon between its bulk and agent-bound phases has been use to achieve sub-picomolar detection sensitivity. Control over the saturation transfer dynamics, particularly when multiple exchanging resonances are present in the spectra, requires saturation fields of limited bandwidth and is generally accomplished by continuous wave irradiation. We demonstrate instead how band-selective saturation sequences based on multiple pulse inversion elements can yield saturation bandwidth tuneable over a wide range, while depositing less RF power in the sample. We show how these sequences can be used in imaging experiments that require spatial-spectral and multispectral saturation. The results should be applicable to all CEST experiments and, in particular, will provide the spectroscopic control required for applications of arrays of xenon chemical sensors in microfluidic chemical analysis devices.  相似文献   
136.
We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here—which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole—circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths.  相似文献   
137.
The aim of the present work was to study the effect of addition of different amino acids and tricarboxylic acid cycle intermediates as metabolic precursors on the production of poly (γ-glutamic acid) (PGA) by Bacillus licheniformis NCIM 2324. A maximum yield of 35.75 g/l was obtained with the medium supplemented with 0.5 mM l-glutamine and 10 mM α-ketoglutaric acid as compared to 26.12 g/l PGA achieved with the control in the absence of metabolic precursors. Addition of precursors also enhanced the utilization of l-glutamic acid during fermentation.  相似文献   
138.
Controlled release of a therapeutic agent to patients is gaining enormous importance during the recent past. The present paper focused on the intercalation of vitamin B6 (pyridoxine, VB6) into montmorillonite (MMT) as a controlled release drug carrier. MMT used in this study is of Indian origin. Intercalation of VB6 into MMT at different times, temperatures, pH values, and initial concentration is illustrated. The MMT–VB6 hybrid was characterized by X-ray diffraction, Fourier transform infrared, and thermogravimetric analysis. VB6 was successfully adsorbed on the surface of MMT and also intercalated into the interlayer of MMT. The release processes were monitored under in vitro conditions using simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 7.4) at 37 ± 0.5 °C. In vitro release experiments revealed that VB6 was released from the MMT–VB6 hybrid steadily and was pH-dependent.  相似文献   
139.
This work concerns the nonlinear normal modes (NNMs) of a 2 degree-of-freedom autonomous conservative spring–mass–pendulum system, a system that exhibits inertial coupling between the two generalized coordinates and quadratic (even) nonlinearities. Several general methods introduced in the literature to calculate the NNMs of conservative systems are reviewed, and then applied to the spring–mass–pendulum system. These include the invariant manifold method, the multiple scales method, the asymptotic perturbation method and the method of harmonic balance. Then, an efficient numerical methodology is developed to calculate the exact NNMs, and this method is further used to analyze and follow the bifurcations of the NNMs as a function of linear frequency ratio p and total energy h. The bifurcations in NNMs, when near 1:2 and 1:1 resonances arise in the two linear modes, is investigated by perturbation techniques and the results are compared with those predicted by the exact numerical solutions. By using the method of multiple time scales (MTS), not only the bifurcation diagrams but also the low energy global dynamics of the system is obtained. The numerical method gives reliable results for the high-energy case. These bifurcation analyses provide a significant glimpse into the complex dynamics of the system. It is shown that when the total energy is sufficiently high, varying p, the ratio of the spring and the pendulum linear frequencies, results in the system undergoing an order–chaos–order sequence. This phenomenon is also presented and discussed.  相似文献   
140.
Nonlinear normal modes for elastic structures have been studied extensively in the literature. Most studies have been limited to small nonlinear motions and to structures with geometric nonlinearities. This work investigates the nonlinear normal modes in elastic structures that contain essential inertial nonlinearities. For such structures, based on the works of Crespo da Silva and Meirovitch, a general methodology is developed for obtaining multi-degree-of-freedom discretized models for structures in planar motion. The motion of each substructure is represented by a finite number of substructure admissible functions in a way that the geometric compatibility conditions are automatically assured. The multi degree-of-freedom reduced-order models capture the essential dynamics of the system and also retain explicit dependence on important physical parameters such that parametric studies can be conducted. The specific structure considered is a 3-beam elastic structure with a tip mass. Internal resonance conditions between different linear modes of the structure are identified. For the case of 1:2 internal resonance between two global modes of the structure, a two-mode nonlinear model is then developed and nonlinear normal modes for the structure are studied by the method of multiple time scales as well as by a numerical shooting technique. Bifurcations in the nonlinear normal modes are shown to arise as a function of the internal mistuning that represents variations in the tip mass in the structure. The results of the two techniques are also compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号