Metal determinations at low concentration levels (≤ng mL−1) comprise one of most important targets in analytical chemistry. This interest also increases in different areas such as biology, medicine, environment and food samples. In spite of inherent high sensitivities obtained for electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma-mass spectrometry (ICP-MS), these techniques have some limitations depending on the concomitants. As a result, interest in preconcentration techniques still continues increasingly for trace metal determinations by flame atomic absorption spectrometry (FAAS) due to the high accuracy of this method.In this work, thioureasulfonamide resin was synthesized, characterized and applied as a new sorption material for determinations of cadmium and lead in water samples. The method is based on the sorption of Cd and Pb ions on the synthesized resin without using any complexing reagent. The optimization of experimental conditions was performed using factorial design including pH, amount of resin, contact time, first sample volume and final eluent volume. Using the experimental conditions defined in the optimization, the method was applied to the determination and preconcentration of Cd and Pb at ng mL−1 level in natural water. Flame AAS was used for trace metal determinations. This method exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent and optimum pH of solution presents in acidic media. Consequently, 600- and 360-fold improvements in the sensitivity of FAAS were achieved by combining the slotted tube atom trap-atomic absorption spectrometry (STAT-FAAS) and the purposed enrichment method for Cd and Pb, respectively. 相似文献
In the title compounds, {2,2′‐[2,2‐dimethyl‐1,3‐propanediylbis(nitrilomethylidyne)]diphenolato‐κ4N,N′,O,O′}nickel(II), [Ni(C19H20N2O2)], and {2,2′‐[2,2‐dimethyl‐1,3‐propanediylbis(nitrilomethylidyne)]diphenolato‐κ4N,N′,O,O′}copper(II), [Cu(C19H20N2O2)], the NiII and CuII atoms are coordinated by two iminic N and two phenolic O atoms of the N,N′‐bis(salicylidene)‐2,2‐dimethyl‐1,3‐propanediaminate (SALPD2?, C17H16N2O22?) ligand. The geometry of the coordination sphere is planar in the case of the NiII complex and distorted towards tetrahedral for the CuII complex. Both complexes have a cis configuration imposed by the chelate ligand. The dihedral angles between the N/Ni/O and N/Cu/O coordination planes are 17.20 (6) and 35.13 (7)°, respectively. 相似文献
Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83–90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm?3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm?3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests. 相似文献
A fluorescent chemosensor for Ag(I) as a new family of peripherally functionalized zinc-phthalocyanine, 2(3),9(10),16(17),23(24)-tetrakis-{6-(-benzofuran-2-carboxylate)-hexylthio} phthalocyaninatozinc(II) {Zn[Pc(β-S(CH2)6OCOBz-furan)4], (ZnPcBzF), (3), which was derivated from 6-(3,4-dicyanophenylthio)-hexyl–2-benzofuranate (BzF), (2), has been synthesized and fully characterized by elemental analysis, FT-IR, 1H and 13C NMR, MS (ESI and Maldi-TOF). An optical silver ion (Ag(I)) sensor based on the fluorescence quenching of benzofuran moiety and ZnPc core was developed. Both absorbance and fluorescence spectra of ZnPcBzF, (3) exhibit distinct changes in visible region in response to treatment with Ag(I) ion in solution. Such properties make compound ZnPcBzF, (3) intriguing candidates for incorporation into the transducer layer in optically based chemical sensors. 相似文献
A new polymeric ligand, 6-(3,4-dicyanophenylthio)-hexyl-2-polytetrahydrofuranacetate (2) and its liquid crystalline polymeric phthalocyanine, 2,9,16,23-tetrakis-{6-(polytetrahydrofuran-2-carboxylate)-hexylthio-phthalocyaninatocobalt(II) (3), {Co[Pc(S-C6H13OCO-poly-THF)4]}(CoPcLC) have been synthesized. The ligand and the phthalocyanine, bearing polytetrahydrofuran moieties (poly-THF), were characterized using elemental analysis, FTIR, 1H and 13C NMR, and UV–Vis techniques. CoPcLC (3) promotes a greater interaction between the mesogens, resulting in solution aggregations together with a red-shift in the Q-band in the presence of the soft Ag+ ion. The dielectric anisotropy and phase transition temperature values of CoPcLC doped with 4-cyano-4′-n-pentylbiphenyl (5CB) were found to be 7.17 and 40.5 °C, respectively. The dielectrical anisotropy behaviour of the liquid crystals changes from the positive to the negative type. The current–voltage characteristics of the liquid crystals show a non-linear behaviour. 相似文献
In the presented study, the effects of ROCK inhibitor Y-27632, antifreeze protein III, and boron at two different doses were investigated on the spermatological parameters of Ankara buck semen after freeze–thawing. Ejaculates were collected from bucks using an electroejaculator during the breeding season. The ejaculates that showed appropriate characteristics were pooled and used in the dilution and freezing of semen. The extender groups were formed by adding two different doses of three different additives (ROCK inhibitor Y-27632, 5 and 20 µM; antifreeze protein III, 1 and 4 µg/mL; boron, 0.25 and 1 mM) to the control extender. The semen was diluted with the different extenders at 35–37 °C and loaded into straws. Sperm samples frozen in liquid nitrogen vapors, following equilibration, were stored in liquid nitrogen. It was observed that extender supplementation improved post-thaw motility of Ankara buck semen after freeze–thawing. Differences were significant (p < 0.01) for 5 and 10 µM doses of ROCK inhibitor (71.82% and 74.04 % motility), as well as for 0.25 and 1 mM doses of boron (76.36% and 72.08% motility), compared to the control group (66.15% motility). With respect to the evaluation of acrosomal integrity and mitochondrial activity after freeze–thawing, although supplementation provided protection at all doses, the efficacy was not statistically significant (p > 0.05). It was observed that DNA damage was improved by antifreeze protein III at 1 µg/mL (1.23% ± 0.23%) and by boron at all doses (0.25 mM: 1.83% and 1 mM: 1.18%) compared to the control group (3.37%) (p < 0.01), following the thawing process. In the present study, it was determined that some additives added to the extender provided significant improvements in buck spermatozoa motility and DNA damage after thawing. 相似文献
Olympic class sailing is a competitive sport and requires several abilities. An understanding of the responses to aerobic and anaerobic loading will be useful for assessing the training programs, protective strategies and possibility of injuries. Therefore, the aim of this study is to determine lower extremity main muscles skin temperature responses to aerobic and anaerobic test conditions in Turkish Olympic Sailing Athletes. Eighteen sailing athletes were assessed during preseasonal assessment period. Temperatures of quadriceps and hamstring muscle groups were evaluated bilaterally during rest and after Wingate Treadmill tests. Wingate test was accepted as an indicator of anaerobic performance and Treadmill test as an aerobic performance. Infrared thermography was performed to assess the skin temperature at anterior and posterior parts of thigh for both legs. In the triplicate comparison, the temperature changes between the rest, aerobic test and anaerobic test conditions were significant (p?<?0.05). In the analysis to determine the difference between the compared groups; for both muscle groups, temperature change after anaerobic performance was not significant; in contrast to this result the change in muscle temperature after aerobic performance was significant (p?<?0.05). Energetic—metabolic activity of major muscle groups of lower extremities during aerobic and anaerobic performance are important for injury prevention, treatment, rehabilitation and return to play. Present study shows that aerobic performance or activities requires higher energetic-metabolic activity.
The objective of this study is to analyze the glass transition temperature and relaxation processes of low molecular weight polystyrene-block-polyisoprene diblock copolymers with different compositions, synthesized via anionic polymerization. Thermal properties were investigated by differential scanning calorimetry and dynamic-mechanical thermal analysis, while the morphologies at room temperature were investigated by transmission electron microscopy and small-angle X-ray scattering. The χN values indicate that the diblock copolymers lie near the weak segregation regime. Three different experimental techniques were applied to determine the dynamic properties, i.e., linear viscoelastic shear oscillations, creep recovery experiments, and dielectric spectroscopy. The rheological experiments were performed above the order–disorder transition temperature where the diblock copolymers behave like a Maxwell fluid. Our results indicate that the presence of the polyisoprene segments strongly influences the monomeric friction coefficient and the tendency to form entanglements above the order–disorder temperature. Consequently, the zero-shear rate viscosity of a diblock copolymer is much lower than the zero-shear rate viscosity of the neat polystyrene block (the polystyrene precursor of the polymerization procedure). Dielectric spectroscopy enables the analysis of relaxation processes below the glass transition of the polystyrene microphase. Frequency sweeps indicate the dynamic glass transition of the polyisoprene blocks, which are partly mixed with the polystyrene blocks, which are always the majority component in the block copolymers of this study. 相似文献