首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   33篇
  国内免费   5篇
化学   284篇
力学   17篇
数学   26篇
物理学   41篇
  2023年   1篇
  2022年   6篇
  2021年   10篇
  2020年   13篇
  2019年   20篇
  2018年   15篇
  2017年   12篇
  2016年   36篇
  2015年   26篇
  2014年   38篇
  2013年   38篇
  2012年   42篇
  2011年   35篇
  2010年   9篇
  2009年   11篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   11篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有368条查询结果,搜索用时 15 毫秒
111.
An effective electrochemical sensor for the rapid and simultaneous determination of tramadol and acetaminophen based on carbon paste electrode (CPE) modified with NiFe2O4/graphene nanoparticles was developed. The structures of the synthesized NiFe2O4/graphene nanocomposite and the electrode composition were confirmed by X-ray diffraction (XRD) spectrometry, Fourier transform infrared (FT-IR) spectrometry and scanning electron microscopy (SEM). The peak currents of square wave voltammetry of tramadol and acetaminophen increased linearly with their concentration in the range of 0.01–9 μmol L−1. The detection limit for their determination was found to be 0.0036 and 0.0030 μmol L−1, respectively. The results show that the combination of graphene and NiFe2O4 nanoparticles causes a dramatic enhancement in the sensitivity of the sensor. The fabricated sensor exhibited high sensitivity and good stability, and would be valuable for the clinical assay of tramadol and acetaminophen.  相似文献   
112.
In this paper, the genetic algorithm (GA) method is used for the multi-objective optimization of ring stiffened cylindrical shells. The objective functions seek the maximum fundamental frequency and minimum structural weight of the shell subjected to four constraints including the fundamental frequency, the structural weight, the axial buckling load, and the radial buckling load. The optimization process contains six design variables including the shell thickness, the number of stiffeners, the width and height of stiffeners, the stiffeners eccentricity distribution order, and the stiffeners spacing distribution order. The real coding scheme is used for representing the solution string, while the generation number-based adaptive penalty function is applied for penalizing infeasible solutions. In analytical solution, the Ritz method is applied and the stiffeners are treated as discrete elements. Some examples of simply supported cylindrical shells with nonuniform eccentricity distribution and nonuniform rings spacing distribution are provided to demonstrate the optimality of the solution obtained by the GA technique. The effects of objective weighting coefficients and bounding values of the design variables on the optimum solution are studied for various cases. The results show that the optimal solution can vary with the weighting coefficients significantly. It is also found that extreme reduction and augmentation in turn in the structural weight and fundamental frequency can be simultaneously achieved by selecting suitable stiffeners’ geometrical parameters and distributions. Furthermore, the bounding values of the design variables have great effects on the optimum results.  相似文献   
113.
A group of shape memory polyurethane‐based nanocomposites containing graphene quantum dot nanoparticles (GQDs) were prepared via in‐situ polymerization method. GQD nanoparticles were synthesized by a facile and rapid microwave‐assisted method and characterized by Fourier‐transform infrared spectroscopy (FTIR), X‐ray diffraction pattern, field emission scanning microscopy, transmission electron microscopy, and fluorescence analysis. Chemical structure and hydrogen bonding index (HBI[C=O]) of the nanocomposites were analyzed via FTIR spectra. The results show that the incorporation of GQDs in PU matrix reduces HBI(C=O) of nanocomposites. Crystalline structure and thermal properties of the nanocomposites were investigated by differential scanning calorimetry. As results indicate, nucleation effect of GQDs raises crystallinity content of the samples. Mechanical examinations indicate that incorporation of GQDs improves Young's modulus of the nanocomposites, while their elongation at break values are reduced. In addition, shape memory analyses reveal that the presence of GQDs in PU matrix increases the shape fixity ratios in nanocomposites.  相似文献   
114.
In recent years, because of the limited availability of oil resources and the increasing concerns regarding environment protection, much attention has been drawn to produce packaging films based on degradable biopolymers instead of synthetic polymers. On the other hand, because of the high costs of oil extraction, raw materials and film production, and disposing of the waste products of synthetic films, the need to replace these films with less pollutant and more cost‐effective films is growing globally. In this study, to answer the need for replacing synthetic polymer films, nanocomposite films based on thermoplastic starch reinforced with cellulose nanofibers and graphene oxide nanoplatelets were produced and characterized. The results implied that the synergistic effect of cellulose nanofibers and graphene oxide nanoplatelets has played an important role in improving the mechanical properties of the films. The results showed that with the addition of cellulose nanofibers and graphene oxide nanoplatelets, the tensile strength and elastic modulus of starch film were increased from 3 and 32 MPa to 13 and 436 MPa, which corresponds to 438% and 1435% improvement, respectively. In addition, the oxygen permeability resistance and the water vapor transmission for samples containing 3 wt% of graphene oxide nanoplatelets was decreased by 78% and 30% compared with the thermoplastic starch film, respectively. The permeability coefficient of the samples containing 3 wt% graphene oxide nanoplatelets for oxygen, nitrogen, and carbon dioxide have proved to be 0.051, 0.054, and 0.047 barrer, which shows that these films can perform well as packaging films.  相似文献   
115.
The adsorption of a H2S molecule on the surface of an MgO nanotube was investigated using density functional theory. It was found that H2S molecule can be associatively adsorbed on the tube surface without any energy barrier or it can be dissociated into –H and –SH species overcoming energy barrier of 4.03–7.77 kcal/mol. The associative adsorption is site selective so that the molecule is oriented in such a way that the sulfur atom was linked to an Mg atom. The HOMO–LUMO energy gap of the tube has slightly changed upon associative adsorption, while they were significantly influenced by dissociation process. Especially, the highest occupied molecular orbital of the tube shifts to higher energies which can facilitate electron emission current from the tube surface. Also, energy gap of the tube dramatically decreased by about 0.93–1.05 eV which influences the electrical conductivity of the tube.  相似文献   
116.
Magnetic molecularly imprinted polymers have been synthesized for the selective preconcentration and trace determination of lamotrigine (LTG) in urine and plasma samples. The magnetic nanoparticles were modified by tetraethyl orthosilicate and 3‐methacryloxypropyl trimethoxysilane before imprinting. The magnetic molecularly imprinted polymers were prepared via surface molecular imprinting technique, using Fe3O4 as a magnetic component, LTG as template molecule, methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross‐linker, and 2,2′‐azobisisobutyronitrile as a radical initiator in methanol/acetonitrile (50:50, v/v) as the porogen. The obtained sorbent was characterized using scanning electron microscopy, Fourier‐transform infrared spectroscopy, X‐ray diffraction, and thermal analysis. Separation of the sorbent from the sample solution was simply achieved by applying an external magnetic field. Determination of the extracted drug was performed by high‐performance liquid chromatography with UV detection. Under the optimum extraction conditions, the method detection limits were 0.7 μg/L (based on S/N of 3) for urine samples and 0.5 μg/L for plasma samples. A linear dynamic range of 1–1000 μg/L was obtained for LTF in plasma and urine samples. Finally, the applicability of the proposed method was evaluated by extraction and determination of LTG in urine and plasma samples.  相似文献   
117.
Conductive polymers (CPs) are classified as materials which exhibit highly reversible redox behavior and the unusual combined properties of metal and plastics. CPs, due to their multifunctionality, ease of synthesis and their stability, have attracted more attentions in different fields of research, including sample preparation. CPs along with several commercial hydrophilic sorbents, are alternative to the commercially available hydrophobic sorbents which despite their high specific surface areas, have poor interactions and retentions in the extraction of polar compounds. This review covers a general overview regarding the recent progress and new applications of CPs toward their synthesis and use in novel extraction and microextraction techniques including solid phase microextraction (SPME), electrochemically controlled solid-phase microextraction (EC-SPME) and other relevant techniques. Furthermore the contribution of nano-structured CPs in these methodologies is also reviewed.  相似文献   
118.
A novel Fe3O4–poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50 nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe3O4/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, extraction time and stirring rate were optimized. Under the optimum condition, a linear spiked calibration curve in the range of 0.35–5.00 μg L−1 with R2 = 0.9991 was obtained. The limits of detection (3Sb) and limits of quantification (10Sb) of the method were 0.10 μg L−1 and 0.35 μg L−1 (n = 3), respectively. The relative standard deviation for water sample with 0.5 μg L−1 of RhB was 4.2% (n = 5) and the absolute recovery was 92%. The method was applied for the determination of rhodamine B in dishwashing foam, dishwashing liquid, shampoo, pencil, matches tips and eye shadows samples and the relative recovery percentage were in the range of 94–99%.  相似文献   
119.
We describe a nanosized Cd(II)-imprinted polymer that was prepared from 4-vinyl pyridine (the functional monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator), neocuproine (the ligand), and Cd(II) (the template ion) by precipitation polymerization in acetonitrile as the solvent. The imprinted polymer was characterized by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, and scanning electron microscopy. The maximum adsorption capacity of the nanosized sorbent was calculated to be 64 mg g?1. Cadmium(II) was then quantified by FAAS. The relative standard deviation and limit of detection are 4.2 % and 0.2 μg L?1, respectively. The imprinted polymer displays improve selectivity for Cd(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This nanosized sorbent is an efficient solid phase for selective extraction and preconcentration of Cd(II) in complex matrices. The method was successfully applied to the trace determination of Cd(II) in food and water samples.
Figure
We describe a nanosized ion-imprinted polymer (IIP) for the selective preconcentration of Cd(II) ions. The nanosized-IIP was characterized by X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetric and differential thermal analysis, and by scanning electron microscopy.  相似文献   
120.
We have developed a new method for the microextraction and speciation of arsenite and arsenate species. It is based on ionic liquid dispersive liquid liquid microextraction and electrothermal atomic absorption spectrometry. Arsenite is chelated with ammonium pyrrolidinedithiocarbamate at pH 2 and then extracted into the fine droplets of 1-butyl-3-methylimidazolium bis(trifluormethylsulfonyl) imide which acts as the extractant. As(V) remains in the aqueous phase and is then reduced to As(III). The concentration of As(V) can be calculated as the difference between total inorganic As and As(III). The pH values, chelating reagent concentration, types and volumes of extraction and dispersive solvent, and centrifugation time were optimized. At an enrichment factor of 255, the limit of detection and the relative standard deviation for six replicate determinations of 1.0 μg?L?1 As(III) are 13 ng?L?1 and 4.9 %, respectively. The method was successfully applied to the determination of As(III) and As(V) in spiked samples of natural water, with relative recoveries in the range of 93.3–102.1 % and 94.5–101.1 %, respectively.
Figure
Speciation of arsenite and arsenate by ionic liquid dispersive liquid-liquid microextraction - electrothermal atomic absorption spectrometry  相似文献   
[首页] « 上一页 [7] [8] [9] [10] [11] 12 [13] [14] [15] [16] [17] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号