首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   1篇
化学   117篇
晶体学   1篇
力学   3篇
数学   42篇
物理学   86篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   12篇
  2012年   11篇
  2011年   8篇
  2010年   13篇
  2009年   7篇
  2008年   20篇
  2007年   13篇
  2006年   18篇
  2005年   13篇
  2004年   10篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   8篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1974年   3篇
  1966年   1篇
  1955年   3篇
  1954年   3篇
  1935年   2篇
  1903年   1篇
排序方式: 共有249条查询结果,搜索用时 31 毫秒
81.
82.
Biman Bagchi 《Molecular physics》2014,112(9-10):1418-1426
Several time dependent fluorescence Stokes shift (TDFSS) experiments have reported a slow power law decay in the hydration dynamics of a DNA molecule. Such a power law has neither been observed in computer simulations nor in some other TDFSS experiments. Here we observe that a slow decay may originate from collective ion contribution because in experiments DNA is immersed in a buffer solution, and also from groove bound water and lastly from DNA dynamics itself. In this work we first express the solvation time correlation function in terms of dynamic structure factors of the solution. We use mode coupling theory to calculate analytically the time dependence of collective ionic contribution. A power law decay in seen to originate from an interplay between long-range probe–ion direct correlation function and ion–ion dynamic structure factor. Although the power law decay is reminiscent of Debye–Falkenhagen effect, yet solvation dynamics is dominated by ion atmosphere relaxation times at longer length scales (small wave number) than in electrolyte friction. We further discuss why this power law may not originate from water motions which have been computed by molecular dynamics simulations. Finally, we propose several experiments to check the prediction of the present theoretical work.  相似文献   
83.
The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations.  相似文献   
84.
The well-known linear relationship (TΔS# =αΔH# +β, where 1 >α > 0,β > 0) between the entropy (ΔS#) and the enthalpy (ΔH#) of activation for reactions in polar liquids is investigated by using a molecular theory. An explicit derivation of this linear relation from first principles is presented for an outersphere charge transfer reaction. The derivation offers microscopic interpretation for the quantitiesα andβ. It has also been possible to make connection with and justify the arguments of Bell put forward many years ago  相似文献   
85.
The solvation time correlation function for solvation in liquid water was measured recently. The solvation was found to be very fast, with a time constant equal to 55 fs. In this article we present theoretical studies on solvation dynamics of ionic and dipolar solutes in liquid water, based on the molecular hydrodynamic approach developed earlier. The molecular hydrodynamic theory can successfully predict the ultrafast dynamics of solvation in liquid water as observed from recent experiments. The present study also reveals some interesting aspects of dipolar solvation dynamics, which differs significantly from that of ionic solvation. Dedicated to Prof. C N R Rao on his 60th birthday  相似文献   
86.
87.
B Bagchi  S N Biswas 《Pramana》1996,46(3):223-227
We explore the possibility of deforming Gell-Mann-Okubo (GMO) mass formula within the framework of a quantized enveloping algebra. A small value of the deformation parameter is found to provide a good fit to the observed mass spectra of theπ, K andη mesons.  相似文献   
88.
89.
Intercalation into DNA (insertion between a pair of base pairs) is a critical step in the function of many anticancer drugs. Despite its importance, a detailed mechanistic understanding of this process at the molecular level is lacking. We have constructed, using extensive atomistic computer simulations and umbrella sampling techniques, a free energy landscape for the intercalation of the anticancer drug daunomycin into a twelve base pair B-DNA. A similar free energy landscape has been constructed for a probable intermediate DNA minor groove-bound state. These allow a molecular level understanding of aspects of the thermodynamics, DNA structural changes, and kinetic pathways of the intercalation process. Key DNA structural changes involve opening the future intercalation site base pairs toward the minor groove (positive roll), followed by an increase in the rise, accompanied by hydrogen bonding changes of the minor groove waters. The calculated intercalation free energy change is -12.3 kcal/mol, in reasonable agreement with the experimental estimate -9.4 kcal/mol. The results point to a mechanism in which the drug first binds to the minor groove and then intercalates into the DNA in an activated process, which is found to be in general agreement with experimental kinetic results.  相似文献   
90.
Fluorescence probes have been used to estimate Kamlet-Taft solvatochromic parameters alpha and pi* representing hydrogen-bond donation ability and dipolarity/polarizability, respectively, of sodium dodecyl sulfate (SDS)-Triton X 100 (TX100) mixed aggregates with varying compositions. The hydrogen-bond donation ability of the mixed aggregate has been found to increase with SDS composition, whereas the dipolarity/polarizability parameter decreases. The relative contribution of electrostatic and steric effect toward the total free energy of micellization have been calculated for the mixture. The solvatochromic parameters alpha and pi* depend linearly on the total free energy of micellization, indicating a correlation between aggregational and solvatochromic properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号