首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
化学   16篇
力学   1篇
数学   1篇
物理学   10篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2011年   2篇
  2010年   2篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
11.
A template‐assisted polymer‐derived ceramic route is investigated for preparing a series of silicoboron carbonitride (Si/B/C/N) foams with a hierarchical pore size distribution and tailorable interconnected porosity. A boron‐modified polycarbosilazane was selected to impregnate monolithic silica and carbonaceous templates and form after pyrolysis and template removal Si/B/C/N foams. By changing the hard template nature and controlling the quantity of polymer to be impregnated, controlled micropore/macropore distributions with mesoscopic cell windows are generated. Specific surface areas from 29 to 239 m2 g?1 and porosities from 51 to 77 % are achieved. These foams combine a low density with a thermal insulation and a relatively good thermostructural stability. Their particular structure allowed the in situ growth of metal–organic frameworks (MOFs) directly within the open‐cell structure. MOFs offered a microporosity feature to the resulting Si/B/C/N@MOF composite foams that allowed increasing the specific surface area to provide CO2 uptake of 2.2 %.  相似文献   
12.
A nonisothermal adsorption experiment using a controlled flow of cyclopentane in the 333-313 K range is used to simultaneously estimate the specific surface area and micropore volume of a hybrid (organic/inorganic) alcogel. For reference, the method is also applied to an all-inorganic material with a more rigid structure, namely, a high surface area SiO(2)-Al(2)O(3). The proposed data analysis provides guidelines to determine whether adsorption data on a certain adsorbate/adsorbent system can be modeled effectively as a convolution of BET (meso- and macropore) and Dubinin-Radushkevitch (DR, micropore) contributions. Copyright 2000 Academic Press.  相似文献   
13.
Herein, EuIII‐doped 3D mesoscopically ordered arrays of mesoporous and nanocrystalline titania are prepared and studied. The rare‐earth‐doped titania thin films—synthesized via evaporation‐induced self‐assembly (EISA)—are characterized by using environmental ellipsoporosimetry, electronic microscopy (i.e. high‐resolution scanning electron microscopy, HR‐SEM, and transmission electron microscopy, HR‐TEM), X‐ray diffraction, and luminescence spectroscopy. Structural characterizations show that high europium‐ion loadings can be incorporated into the titanium‐dioxide walls without destroying the mesoporous arrangement. The luminescence properties of EuIII are investigated by using steady‐state and time‐resolved spectroscopy via excitation of the EuIII ions through the titania host. Using EuIII luminescence as a probe, the europium‐ion sites can be addressed with at least two different environments within the mesoporous framework, namely, a nanocrystalline environment and a glasslike one. Emission fluctuations (5D07F2) are observed upon continuous UV excitation in the host matrix. These fluctuations are attributed to charge trapping and appear to be strongly dependent on the amount of europium and the level of crystallinity.  相似文献   
14.
Total and differential cross sections for the reactions p + d3He + m 0 with m=π, η and p + d3H+π+ were measured with the GEM detector at COSY for beam momenta between threshold and the maximum of the corresponding baryon resonance. For both reactions a strong forward-backward asymmetry was found. The data were compared with model calculations. The aspect of isospin symmetry breaking is studied. Representing the GEM Collaboration  相似文献   
15.
This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of quark-gluon plasma believed to have created in heavy-ion collisions and in early Universe are reported.  相似文献   
16.
Highly internal phase emulsion (polyHIPE) materials are promising macrocellular foams bearing versatile applications ranging from catalysis, optics, filtration, insulator and so forth. In this critical review water-in-oil HIPE, oil-in-water HIPE and Pickering-based HIPE are discussed. Also in each above-mentioned HIPE family, declination between the organic, inorganic or hybrid-organic foams chemical nature is proposed. The polyHIPE audience is thereby strongly interdisciplinary in nature crossing boundaries of physical chemistry, colloids, polymer science, sol-gel chemistry, hybrid materials, biology and beyond (114 references).  相似文献   
17.
Complex wax@water@SiO2 multicore capsules are synthesized by combining sol‐gel process and formulation of wax‐in‐water‐in‐oil double emulsions. The inner direct wax‐in‐water emulsion is stabilized with modified silica nanoparticles using limited coalescence occurring in Pickering emulsions. In a second step, this obtained liquid dispersion is emulsified in poly‐dimethylsiloxane (PDMS) using a non ionic surfactant to stabilize the second water/oil interface. Finally, a sol‐gel process is employed to mineralize the as‐generated double emulsions giving rise to wax@water@SiO2 multicore capsules. Due to the wax volume expansion through melting, the as‐synthesized multicore capsules offer thermally stimulated release that is enhanced when surfactant is added in the surrounding continuous oil phase. In addition, the melted wax release can be tuned from a one‐step process to a more sequential dropping mode by varying the mineral precursor tetraethoxy‐orthosilane (TEOS) concentration in the oily phase during mineralization.  相似文献   
18.
A three steps synthesis route is proposed to generate thermosensitive and magnetically responsive γ‐Fe2O3@Wax@SiO2 sub‐micrometer capsules with a paraffinic core and a solid and brittle shell. The process integrates Pickering‐based emulsions, inorganic and sol–gel chemistries to promote monodisperse in size wax droplets, γ‐Fe2O3 nanoparticles and mineralization of the wax/water interfaces. Hybrid capsules are obtained with an average size around 800 nm, representing the first example of sub‐micrometer capsules generated employing Pickering emulsions as templates. Cetyltrimethylammonium bromide (CTAB) cationic surfactant added during mineralization at concentrations between 0.17 and 1.0 wt% impacts the shell density. The shell density seems to improve its mechanical strength while affording a low wax expansion volume without breaking for CTAB concentrations above 1.0 wt%. At lower CTAB concentration (0.17 wt%), the silica shell becomes less bulky and cannot resist the wax dilatation induced by the solid‐to‐liquid phase transition imposed by hyperthermia. The magnetically induced heating provided by the internal magnetic moments is sufficient to melt the wax core, expanding its volume, inducing thereby the surrounding silica shell rupture. Such γ‐Fe2O3@Stearic Acid@Wax@SiO2 sub‐micrometer capsules allow a sustained wax release with time, whereby 20% of the wax is released after 50 min of alternating magnetic field treatment.  相似文献   
19.
We fabricate oil-in-water emulsions above the melting temperature of the oil phase (hexadecane and/or paraffin). Upon cooling, the oil droplets crystallize and the initially fluid emulsions turn into hard gels. The systems evolve by following two distinct regimes that depend on the average droplet size and on the oil nature. In some cases gelling involves partial coalescence of the droplets, i.e., film rupturing with no further shape relaxation because of the solid nature of the droplets. In some other cases, gelling occurs without film rupturing and is reminiscent of a jamming transition induced by surface roughness. We prepare blends of oils having different melting temperatures, and we show that it is possible to reinforce the gel stiffness by applying a temperature cycle that produces partial melting of the crystal mass, followed by recrystallization.  相似文献   
20.
An HMX/insulin two-layer system was chosen as a model for further investigation of the matrix properties of explosive materials for protein analytes in plasma desorption mass spectrometry. The dependencies of the molecular ion yield and average charge state as a function of the analyte thickness were studied. An increase in the charge state of multiply protonated molecular species was confirmed as the major matrix effect, with the average charge state z at the smallest thickness studied being higher than in matrix-assisted laser desorption/ionization and closer to the value obtained in electrospray ionization under standard acidic conditions. Observed charge state distributions are significantly narrower than the corresponding Poisson distributions, which suggests that the protonation of insulin is limited in plasma desorption by the number of basic sites in the molecule, similar to electrospray ionization. Both the curve displaying total molecular ion yield and the one showing the total charge (proton) yield as a function of the insulin thickness have maxima at a thickness different from an insulin monolayer. These observations diminish the significance of a matrix/analyte interface mechanism for the explosive matrix assistance. Instead, a mechanism related to the chemical energy release during conversion of the explosive after the ion impact is proposed. As additional mechanisms, enhanced protonation of the analyte through collisions with products of the explosive decay is considered, as well as electron scavenging by other products, which leads to a higher survival probability of positively charged protein molecular ions. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号