首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1320篇
  免费   24篇
  国内免费   3篇
化学   793篇
晶体学   7篇
力学   83篇
数学   118篇
物理学   346篇
  2022年   9篇
  2021年   15篇
  2020年   25篇
  2019年   17篇
  2018年   9篇
  2017年   11篇
  2016年   33篇
  2015年   21篇
  2014年   16篇
  2013年   45篇
  2012年   57篇
  2011年   73篇
  2010年   35篇
  2009年   42篇
  2008年   63篇
  2007年   58篇
  2006年   49篇
  2005年   47篇
  2004年   47篇
  2003年   32篇
  2002年   25篇
  2001年   21篇
  2000年   24篇
  1999年   16篇
  1998年   11篇
  1997年   11篇
  1996年   26篇
  1995年   15篇
  1994年   14篇
  1993年   21篇
  1992年   20篇
  1991年   40篇
  1990年   20篇
  1989年   22篇
  1988年   21篇
  1987年   15篇
  1986年   11篇
  1985年   22篇
  1984年   26篇
  1983年   25篇
  1982年   21篇
  1981年   13篇
  1980年   21篇
  1979年   10篇
  1978年   24篇
  1977年   12篇
  1976年   16篇
  1975年   13篇
  1972年   8篇
  1968年   8篇
排序方式: 共有1347条查询结果,搜索用时 15 毫秒
91.
The analysis of charge state distributions after the interaction of fast Li- and N-ions with a surface at grazing incidence at energies between 50 and 350 keV yields for Li a strongly suppressed and for N an enhanced fraction of neutrals in comparison to the beam-foil interaction. These findings are supported by corresponding alkali-spectra which are dominated by lines from transitions in singly ionized atoms. The experiments are consistently interpreted in terms of a two step model: (1) collisional excitation in the close vicinity of the surface and (2) modification of this population by resonant electron transfer from (to) non localized states in the conduction (valence) band to (from) the ion. The model is also applied to interpret recent beam-foil experiments where preferential populations of Rydberg levels in highly ionized atoms were found.  相似文献   
92.
93.
A combination of atomic force microscopy (AFM), high‐resolution scanning electron microscopy (HR‐SEM), focused‐ion‐beam scanning electron microscopy (FIB‐SEM), X‐ray photoelectron spectroscopy (XPS), confocal fluorescence microscopy (CFM), and UV/Vis and synchrotron‐based IR microspectroscopy was used to investigate the dealumination processes of zeolite ZSM‐5 at the individual crystal level. It was shown that steaming has a significant impact on the porosity, acidity, and reactivity of the zeolite materials. The catalytic performance, tested by the styrene oligomerization and methanol‐to‐olefin reactions, led to the conclusion that mild steaming conditions resulted in greatly enhanced acidity and reactivity of dealuminated zeolite ZSM‐5. Interestingly, only residual surface mesoporosity was generated in the mildly steamed ZSM‐5 zeolite, leading to rapid crystal coloration and coking upon catalytic testing and indicating an enhanced deactivation of the zeolites. In contrast, harsh steaming conditions generated 5–50 nm mesopores, extensively improving the accessibility of the zeolites. However, severe dealumination decreased the strength of the Brønsted acid sites, causing a depletion of the overall acidity, which resulted in a major drop in catalytic activity.  相似文献   
94.
We report here on the electron binding energies and ultrafast electronic relaxation of the Fe(3+)(aq) complex in FeCl(3) aqueous solution as measured by soft X-ray photoelectron (PE) spectroscopy from a vacuum liquid microjet. Covalent mixing between the 3d valence orbitals of the iron cation and the molecular orbitals of water in the ground-state solution is directly revealed by spectroscopy of the highest partially occupied molecular orbitals. Valence PE spectra, obtained for photon energies near the iron 2p absorption edge, exhibit large resonant enhancements. These resonant PE features identify 3d-O2p transient hybridization between iron and water-derived orbitals and are an indication of charge transfer within the electronically excited Fe(3+)(aq)* complex. Charge transfer from water to iron is also revealed by the 2p core-level PE spectrum, and the asymmetric peak shape additionally identifies the characteristic multiplet interactions in the 2p core-hole state. The electronic structure of water molecules in the first hydration shell is selectively probed by Auger decay from water molecules, at excitation energies well below the O1s absorption edge of neat water. These experiments lay the groundwork for establishing resonant PE spectroscopy for the study of electronic-structure dynamics in the large family of transition metal (aqueous) solutions.  相似文献   
95.
X-Ray photoelectron spectroscopy has been extended to colloidal nanoparticles in aqueous solution using a liquid microjet in combination with synchrotron radiation, which allowed for depth-dependent measurements. Two distinct electronic structures are evident in the Si 2p photoelectron spectrum of 7 nm SiO(2)-nanoparticles at pH 10. A core-shell model is proposed where only the outermost layer of SiO(2) nanoparticles, which is mainly composed of deprotonated silanol groups, >Si-O(-), interacts with the solution. The core of the nanoparticles is not affected by the solvation process and retains the same electronic structure as measured in vacuum. Future opportunities of this new experiment are also highlighted.  相似文献   
96.
FT‐IR spectroscopic and thermodynamic measurements were designed to explore the effect of a macromolecular crowder, dextran, on the temperature and pressure‐dependent phase diagram of the protein Ribonuclease A (RNase A), and we compare the experimental data with approximate theoretical predictions based on configuration entropy. Exploring the crowding effect on the pressure‐induced unfolding of proteins provides insight in protein stability and folding under cell‐like dense conditions, since pressure is a fundamental thermodynamic variable linked to molecular volume. Moreover, these studies are of relevance for understanding protein stability in deep‐sea organisms, which have to cope with pressures in the kbar range. We found that not only temperature‐induced equilibrium unfolding of RNase A, but also unfolding induced by pressure is markedly prohibited in the crowded dextran solutions, suggesting that crowded environments such as those found intracellularly, will also oppress high‐pressure protein unfolding. The FT‐IR spectroscopic measurements revealed a marked increase in unfolding pressure of 2 kbar in the presence of 30 wt % dextran. Whereas the structural changes upon thermal unfolding of the protein are not significantly influenced in the presence of the crowding agent, through stabilization by dextran the pressure‐unfolded state of the protein retains more ordered secondary structure elements, which seems to be a manifestation of the entropic destabilization of the unfolded state by crowding.  相似文献   
97.
Methyl acetoacetate and 2,4-pentanedione dianions were condensed with aldehydes and ketones to afford a 1,3,5-trioxygenated carboskeleton. Intramolecular cyclization of the aldol adducts delivered the title compounds in good yield.  相似文献   
98.
Recently synthesized (Winter, R.; Nixon, P. G.; Gard, G. L.; Radford, D. H.; Holcomb, N. R.; Grainger, D. W. J. Fluorine Chem. 2001, 107, 23-30) SF5-terminated perfluoroalkyl thiols (SF5(CF2)nCH2CH2SH, where n = 2, 4, and 6) and a symmetric SF5-terminated dialkyl disulfide ([SF5-CH=CH-(CH2)8-S-]2) were assembled as thin films chemisorbed onto gold surfaces. The adsorbed monolayer films of these SF5-containing molecules on polycrystalline gold were compared using ellipsometry, contact angle, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and infrared spectroscopy (FTIR) surface analytical methods. The resulting SF5-dialkyl disulfide monolayer film shows moderate angle dependence in depth-dependent XPS analysis, suggesting a preferentially oriented film. The SF5-terminated perfluoroalkyl thiols exhibit angular-dependent XPS compositional variance depending on perfluoroalkyl chain length, consistent with improved film assembly (increasingly hydrophobic, fewer defects, and more vertical chain orientation increasing film thickness) with increasing chain length. Tof-SIMS measurements indicate that both full parent ions for these film-forming molecules and the unique SF5 terminal group are readily detectable from the thin films without substantial contamination from other adsorbates.  相似文献   
99.
The influence of pressure on the nucleation rate of insulin under fibril‐forming conditions was studied and subsequently analysed using classical nucleation theory. The aim was a better understanding and quantification of the influence of pressure on protein aggregation/fibrillation reactions. The application of pressure has a drastic accelerating effect on the nucleation and growth process of insulin fibrils. We show that this effect arises from a volume decrease upon nucleus formation, due to formation of a less hydrated and more compact transition state that can be quantified extending nucleation theory by a pressure–volume term. Conversely, the absolute values of the lag time and the critical size of the nucleus cannot be satisfactorily described by the classical nucleation theory, which might be due to the presence of secondary effects, such as parallel aggregation pathways or fragmentation processes.  相似文献   
100.
Leading light : A series of zinc(II) bis‐terpyridine complexes (see picture) is investigated by means of DFT calculations combined with Bader's quantum theory of atoms in molecules. Raman spectroscopy experiments and studies of the electro‐optical properties of the complexes in solution and the solid state are also performed to examine their potential as new emissive materials in light‐emitting devices.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号