首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  国内免费   1篇
化学   17篇
数学   2篇
物理学   5篇
  2023年   1篇
  2020年   1篇
  2016年   1篇
  2013年   2篇
  2011年   2篇
  2007年   1篇
  2001年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1938年   2篇
  1934年   1篇
  1927年   1篇
  1926年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
11.
We investigate the behaviour of Rasmussen's invariant  under the sharp operation on knots and obtain a lower bound for the sharp unknotting number. This bound leads us to an interesting move that transforms arbitrary knots into non-alternating knots.

  相似文献   

12.
The peroxyoxalate reaction is one of the most efficient chemiluminescence transformations known and the only system occurring by an intermolecular chemically initiated electron exchange luminescence (CIEEL) mechanism with confirmed high quantum yields. The peroxyoxalate chemiluminescence (PO-CL) is mainly studied in anhydrous organic medium; however, for bioanalytical application, it should be performed in aqueous media. In the present work, we study the peroxyoxalate system in a binary 1,2-dimethoxyethane/water mixture with bis(2,4,6-trichlorophenyl) oxalate (TCPO), bis(4-methylphenyl) oxalate (BMePO) and bis[2-(methoxycarbonyl)phenyl] oxalate (DMO), catalyzed by sodium salicylate, in the presence of rhodamine 6G as activator. Reproducible kinetic results are obtained for all systems; emission decay rate constants depend on the salicylate as well as hydrogen peroxide concentration, and the occurrence of a specific base catalysis is verified. Although singlet quantum yields determined are lower than in anhydrous media in comparable conditions, they are still considerably high and adequate for analytical applications. The highest singlet quantum yields are obtained for the “ecologically friendly” derivative DMO indicating that this derivative might be the most adequate substrate for the use of the peroxyoxalate system in bioanalytical applications.  相似文献   
13.
Precise energies and intensities of about 450γ-rays of the197Au(n, γ)198Au reaction have been investigated in the energy range from 30 keV to 1 MeV with a bentcrystal spectrometer. Prompt and delayedγ-γ coincidences have been studied with Ge(Li) detectors. A half-life of 124±4 ns has been measured for the state at 312.036 keV, which is found to decay to the ground state through the cascade 97.195–214.841 keV. A new level scheme based on these results has been constructed which contains 160 transitions. Spin and parity assignments have been made for most of the levels.  相似文献   
14.
beta- and gamma-lumicolchicines are photoproducts formed by the cycloisomerization of the tropolone ring of colchicine (COL) alkaloids. The mechanism of the photoconversion, suggested to involve the triplet state, is examined here by studying the effect of the solvent polarity on the lumicolchicine photoisomer ratio. Triplet COL, detected by laser flash photolysis, is quenched by oxygen, but not by transtilbene or 1-methylnaphtalene. Neither the quantum yield of conversion of COL nor the photoproduct ratio was altered by the presence of oxygen. Likewise, energy transfer to COL from triplet acetone produced by either isobutanal/horseradish peroxidase system or tetramethyldioxetane thermolysis failed to provoke photoreaction of COL. Our data argue against the intermediacy of a COL triplet state in the photoisomerization and stress on the role of specific solvent-solute interactions in determining the partitioning of excited singlet state into the beta- and gamma-isomer formation.  相似文献   
15.
Although the mechanisms of many chemiluminescence (CL) reactions have been intensively studied, no general model has been suggested to rationalize the efficiency of these transformations. To contribute to this task, we report here quantum yields for some well‐characterized CL reactions, concentrating on recent reports of efficient transformations. Initially, a short review on the most important general CL mechanisms is given, including unimolecular peroxide decomposition, electrogenerated CL, as well as the intermolecular and intramolecular catalyzed decomposition of peroxides. Thereafter, quantum yield values for several CL transformations are compiled, including the unimolecular decomposition of 1,2‐dioxetanes and 1,2‐dioxetanones, the catalyzed decomposition of appropriate peroxides and the induced decomposition of properly substituted 1,2‐dioxetane derivatives. Finally, some representative examples of quantum yields for complex CL transformations, like luminol oxidation and the peroxyoxalate reaction, in different experimental conditions are given. This quantum yield compilation indicates that CL transformations involving electron transfer steps can occur with high efficiency in general only if the electron transfer is of intramolecular nature, with the intermolecular processes being commonly inefficient. A notable exception to this general rule is the peroxyoxalate reaction which, also constituting an example of an intermolecular electron transfer system, possesses very high quantum yields.  相似文献   
16.
17.
18.
Levels up to 2.3 MeV in 156Gd have been studied using the (n, γ) reaction. Energies and intensities of low-energy γ-rays and electrons emitted after thermal neutron capture have been measured with a curved-crystal spectrometer, Ge(Li) detectors and a magnetic electron spectrometer. High-energy (primary) γ-rays and electrons have been measured with Ge(Li) detectors and a magnetic spectrometer. The high-energy γ-ray spectrum has also been measured in thermal neutron capture in 2 keV resonance neutron capture. The neutron separation energy in 156Gd was measured as Sn = 8535.8 ± 0.5 keV.About 600 transitions were observed of which ~50% could be placed in a level scheme containing more than 50 levels up to 2.3 MeV excitation energy. 42 of these levels were grouped into 15 excited bands. In addition to the β-band at 1050 keV we observe 0+ bands at 1168, 1715 and 1851 keV. Other positive-parity bands are: 1+ bands at 1966, 2027 and 2187 keV; 2+ bands at 1154 (γ-band) and 1828 keV; and 4+ bands at 1511 and 1861 keV. Negative-parity bands are observed at 1243 keV (1?), 1366 keV (0?), 1780 keV (2?) and 2045 keV (4?). Reduced E2 and E0 transition probabilities have been derived for many transitions. The ground band, the β- and γ-bands and the 0+ band at 1168 keV have been included in a phenomenological four-band mixing calculation, which reproduces well the experimental energies and E2 transition probabilities.The lowest three negative-parity (octupole) bands of which the 0? and the 1? bands are very strongly mixed, were included in a Coriolis-coupling analysis, which reproduces well the observed energies. The E1 transition probabilities to the ground band are also well reproduced, while those from the higher-lying 0+ bands to the octupole bands are not reproduced. Absolute and relative transition probabilities have been compared with predictions of the IBA model and the pairingplus-quadrupole model. Both models reproduce well the E2 transitions from the γ-band, while strong disagreements are found for the E2 transitions from the β-band. The IBA model predicts part of the decay features of the higher lying 2+2, 4+1 and 2?1 bands.  相似文献   
19.
Abstract— Excited acetone generated in the thermolysis of tetramethyldioxetane elicits the anomalous S2→ S0 fluorescence from azulene and from xanthione. In the case of azulene it could be demonstrated that (i) only the acetone singlets transfer energy to the S 2 state and (ii) the acetone triplets are quenched. These energy transfer processes are diffusion-controlled.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号