Aluminum is one of the most toxic metals causing a variety of neurologic diseases, especially Alzheimer's disease. It is impossible to avoid contact with aluminum because of its existence in food to medications. Therefore, removal of aluminum from the blood or wastewater is urgently important. The cost-effective and easy-to-prepare adsorbents are needed to get efficient aluminum removal. For that purpose, the poly(2-hydroxyethylmethacrylate-co-acrylic acid), poly(HEMA-co-AA), microparticles was synthesized to remove aluminum in a very short interaction time. The achievement of the desired polymeric structure was confirmed via Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM), etc. Additionally, particle features such as swelling ratio, size, and surface area were determined. The microparticles synthesized in this study have been determined with very good adsorption capacity even in small aluminum concentrations. 相似文献
We provide modeling and experimental data describing the dominant ion-loss mechanisms for differential mobility spectrometry (DMS). Ion motion is considered from the inlet region of the mobility analyzer to the DMS exit, and losses resulting from diffusion to electrode surfaces, insufficient effective gap, ion fragmentation, and fringing field effects are considered for a commercial DMS system with 1-mm gap height. It is shown that losses due to diffusion and radial oscillations can be minimized with careful consideration of residence time, electrode spacing, gas flow rate, and waveform frequency. Fragmentation effects can be minimized by limitation of the separation field. When these parameters were optimized, fringing field effects at the DMS inlet contributed the most to signal reduction. We also describe a new DMS cell configuration that improves the gas dynamics at the mobility cell inlet. The new cell provides a gas jet that decreases the residence time for ions within the fringing field region, resulting in at least twofold increase in ion signal as determined by experimental data and simulations.
Sample throughput in electrospray ionization mass spectrometry (ESI-MS) is limited by the need for frequent ion path cleaning to remove accumulated debris that can lead to charging and general performance degradation. Contamination of ion optics within the vacuum system is particularly problematic as routine cleaning requires additional time for cycling the vacuum pumps. Differential mobility spectrometry (DMS) can select targeted ion species for transmission, thereby reducing the total number of charged particles entering the vacuum system. In this work, we characterize the nature of instrument contamination, describe efforts to improve mass spectrometer robustness by applying DMS prefiltering to reduce contamination of the vacuum ion optics, and demonstrate the capability of DMS to extend the interval between mass spectrometer cleaning. In addition, we introduce a new approach to effectively detect large charged particles formed during the electrospray ionization (ESI) process.
Hyperbranched poly(aryl-ether-urea)s with phenyl, N,N-dimethylamino ethyl and polyethylene oxide end-groups linked through urethane group – HBPEU-1, HBPEU-2 and HBPEU-3 respectively – were synthesized from an AB2-type blocked isocyanate monomer and characterized by FT-IR, 1H-NMR, SEC-MALLS, TGA and DSC techniques. The molecular weight of the polymers were found to be ranged from 4.9 × 103 ? 1.96 × 104 g/mol. The TGA results showed that the polymers decompose between 175°C – 220°C. In the DSC curves, HBPEU-1 and HBPEU-3 showed Tg at 160°C and 53°C respectively, whereas HBPEU-2 did not showed clear Tg. All the three polymers were converted into polymer electrolytes by doping with LiI/I2. The doped polymers showed remarkably high ionic conductivity, up to 222 – 277 times compared to the un-doped polymers and the highest conductivity was observed with doped HBPEU-2. The TiO2 based dye-sensitized solar cells (DSSCs) were fabricated using the doped polymer electrolytes and their performance was tested; HBPEU-2 showed good performance by yielding energy conversion efficiency (η) of 4.5%. 相似文献
A generalized algorithm of the multivariate simulation of spectrometric data is considered for solving typical analytical problems, like the determination of the concentration of a particular analyte and the assignment of a sample to one of predefined classes. In particular, we considered preliminary data processing, exploratory analysis, optimization of a chemometric model, calculation of performance characteristics, transfer of the model to other spectrometers, and automation of chemometric processing for the routine analysis of samples. To illustrate the potential of the method, we selected a system of bovine and porcine heparin, mixtures of soy and sunflower lecithin, and a set of red and white wine samples as test samples. Partial least squares and discriminant analysis were used as chemometric methods. We used proton nuclear magnetic resonance (1H NMR) to record signals. Using the MATLAB environment, chemometric programs were developed for automated data processing in the context of problems under consideration and for the transfer of multivariate models to other spectrometers. Based on the results obtained, a methodology is proposed for the multivariate analysis of spectrometric data, which can be used in the analysis of various types of matrices and spectrometric signals. 相似文献
An electrochemical aptasensor is developed for the highly sensitive determination of cytochrome C, using a change in the redox current of Neutral Red covalently bound to terminal carboxyl groups of decasubstituted pillar[5]arene as a signal. The inclusion of the analyte into the complex with an aptamer reduces peaks of redox current of the dye through the dissociation of electron transfer chain in the surface layer. The aptasensor enables the determination of 1 nM to 1.0 mM of cytochrome C in the presence of 1000-fold excesses of albumin, polyethylene glycol, and lysozyme as models of interfering components in biological fluids. 相似文献
Products of reaction between the organoselenium xenobiotic, diacetophenonyl selenide (1,5-diphenyl-3-selenapenta-1,5-dione), and reduced glutathione at different molar ratios and pH values were studied by HPLC and TLC. Reaction intermediates, S-(acetophenylselenyl)glutathione and glutathione selenodisulfide, and reaction products, acetophenone and hydroselenide anion, were detected. The reaction scheme proposed earlier was confirmed. 相似文献
A new method of mathematical correction of the results of analysis, obtained by inductively coupled plasma mass spectrometry, for the elimination of the interference of doubly charged ion was proposed. This method bases on the use recording isotope signals in two operation modes of the spectrometer:standard and with using a collision cell (Kinetic energy discrimination/KED mode). The mathematical correction of the results of arsenic determination in model solutions was performed using two processes, standard and proposed in this paper. The accuracy and repeatability of the results were compared. 相似文献
A mathematical model is proposed for revealing the absence of a compound to be identified in an electron impact mass spectral library. The mathematical model (developed based on PLS Discriminant Analysis) can be represented as a “black box” which provides an answer whether a compound to be sought is absent or present in a database. The match factors of top ten candidates among the possible ones were used as input data. More than 5000 objects (mass spectra) were used at the steps of training, validation, and testing. The developed classification model provides correct prediction (of whether a compound is absent from the library) in 28.4% cases, while only 1.2% of compounds present in the database were incorrectly classified as the absent ones. 相似文献