首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   11篇
化学   191篇
力学   1篇
数学   1篇
物理学   26篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2014年   9篇
  2013年   11篇
  2012年   15篇
  2011年   25篇
  2010年   12篇
  2009年   6篇
  2008年   19篇
  2007年   20篇
  2006年   12篇
  2005年   20篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
141.
For the first time, a C60 derivative ( 1 ) and two different lanthanum metallofullerene derivatives, La@C82Py ( 2 ) and La2@C80Py ( 3 ), that feature a pyridyl group as a coordination site for transition‐metal ions have been synthesized and integrated as electron acceptors into coordinative electron‐donor/electron‐acceptor hybrids. Zinc tetraphenylporphyrin ( ZnP ) served as an excited‐state electron donor in this respect. Our investigations, by means of steady‐state and time‐resolved photophysical techniques found that electron transfer governs the excited‐state deactivation in all of these systems, namely 1/ZnP , 2/ZnP , and 3/ZnP , whereas, in the ground state, notable electronic interactions are lacking. Variation of the electron‐accepting fullerene or metallofullerene moieties provides the incentive for fine‐tuning the binding constants, the charge‐separation kinetics, and the charge‐recombination kinetics. To this end, the binding constants, which ranged from log Kassoc=3.94–4.38, are dominated by axial coordination, with minor contributions from the orbital overlap of the curved and planar π systems. The charge‐separation and charge‐recombination kinetics, which are in the order of 1010 and 108 s?1, relate to the reduction potential of the fullerene and metallofullerenes, respectively.  相似文献   
142.
143.
144.
Five new phenylethanoid glycosides, lamiusides A (1), B (2), C (3), D (4) and E (5), were isolated from the whole plants of Lamium purpureum L. (Labiatae) together with seven known compounds (6-12). On the basis of chemical and spectral analyses, the structures of the new compounds were elucidated to be 2-(3,4-dihydroxyphenyl)ethyl-O-beta-D-galactopyranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)-(4-O-trans-caffeoyl)-beta-D-glucopyranoside (1), 2-(3,4-dihydroxyphenyl)ethyl-O-beta-D-galactopyranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)-(4-O-trans-feruloyl)-beta-D-glucopyranoside (2), 2-(3,4-dihydroxyphenyl)ethyl-O-beta-D-galactopyranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)-(6-O-trans-caffeoyl)-beta-D-glucopyranoside (3), 2-(3,4-dihydroxyphenyl)-R,S-methoxy-ethyl-O-beta-D-galactopyranosyl-(1-->2)-alpha-L-rhamnopyranosyl-(1-->3)-(4-O-trans-caffeoyl)-beta-D-glucopyranoside (4) and 2-(3-hydroxy-4-methoxyphenyl)ethyl-O-alpha-L-rhamnopyranosyl-(1-->3)-beta-D-glucopyranosyl-(1-->6)-(4-O-cis-feruloyl)-beta-D-glucopyranoside (5). In addition, the radical-scavenging activities of compounds 1-4 on 1,1-diphenyl-2-picrylhydrazyl radical were examined.  相似文献   
145.
[STRUCTURE: SEE TEXT] A neutral rhodium(I)/BINAP complex effectively catalyzed a [2+2+2] cycloaddition of 1,6-diynes with isothiocyanates to give bicyclic thiopyranimines in 59-98% isolated yield. The reaction with carbon disulfide also proceeded to give bicyclic dithiopyrones in 74-85% isolated yield.  相似文献   
146.
Simple and brilliant : 1‐Substituted 1H‐indole‐2‐carboxylic acids efficiently undergo successive diarylation accompanied by C? H bond cleavage and decarboxylation upon treatment with aryl bromides in the presence of a palladium catalyst system to afford fluorescent 2,3‐diarylindoles. This facile synthetic method provides a highly efficient blue emitter with a quantum yield of 0.97 in the solid state (see scheme).

  相似文献   

147.
148.
We studied processes of cleaning GaN(0 0 0 1) surfaces on four different types of wafers: two types were hydride vapor phase epitaxy (HVPE) free-standing substrates and two types were metal-organic chemical vapor deposition (MOCVD) films grown on these HVPE substrates and prepared by annealing and/or Ar ion sputtering in ultra high vacuum. We observed the surfaces through treatments using in situ low-energy electron diffraction (LEED), reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), and Auger electron spectroscopy, and also using ex situ temperature programmed desorption, X-ray photoelectron spectroscopy, X-ray diffraction, and secondary ion mass spectrometry. For HVPE samples, we obtained relatively clean surfaces under optimized three-step annealing conditions (200 °C for 12 h + 400 °C for 1 h + 500 °C for 5 min) without sputtering, after which the surface contamination of oxide and carbide was reduced to ∼20% of that before annealing. Clear GaN(0 0 0 1)1×1 patterns were obtained by LEED and RHEED. STM images showed flat terraces of ∼10 nm size and steps of ∼0.5 nm height. Upon annealing the HVPE-GaN samples at a much higher temperature (C), three-dimensional (3D) islands with facets were formed and the surface stoichiometry was broken down with the desorption of nitrogen in the form of ammonia, since the samples include hydrogen as an impurity. Ar+ sputtering was effective for removing surface contamination, however, postannealing could not recover the surface roughness but promoted the formation of 3D islands on the surface. For MOCVD/HVPE homoepitaxial samples, the surfaces are terminated by hydrogen and the as-introduced samples showed a clear 1×1 structure. Upon annealing at 500-600 °C, the surface hydrogen was removed and a 3×3 reconstruction structure partially appeared, although a 1×1 structure was dominant. We summarize the structure differences among the samples under the same treatment and clarify the effect of crystal quality, such as dislocations, the concentration of hydrogen impurities, and the residual reactant molecules in GaN films, on the surface structure.  相似文献   
149.
A highly regioselective intermolecular cyclotrimerization of terminal alkynes has been developed based on the use of the cationic rhodium(I)/DTBM-Segphos complex. This method can be applied to a variety of terminal alkynes to provide 1,2,4-trisubstituted benzenes in high yield and with high regioselectivity. A chemo- and regioselective intermolecular crossed-cyclotrimerization of dialkyl acetylenedicarboxylates with a variety of terminal alkynes has also been developed based on the use of the cationic rhodium(I)/H8-BINAP complex, furnishing 3,6-disubstituted phthalates in high yields. It constitutes a highly efficient new method for intermolecular crossed-cyclotrimerization of two different monoynes in terms of catalytic activity, chemo- and regioselectivity, scope of substrates, and ease of operation. The versatility of this new crossed-alkyne cyclotrimerization procedure is demonstrated through its application to one-step synthesis of a [6]metacyclophane and [7]-[12]paracyclophanes from the corresponding terminal alpha,omega-diynes. Mechanistic studies have revealed that the chemo- and regioselectivity of this crossed-alkyne cyclotrimerization are determined by the preferential formation of a specific rhodium metallacycle derived from a terminal alkyne and a dialkyl acetylenedicarboxylate.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号