首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   12篇
  国内免费   10篇
化学   188篇
晶体学   1篇
力学   12篇
数学   30篇
物理学   57篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   18篇
  2019年   11篇
  2018年   24篇
  2017年   8篇
  2016年   11篇
  2015年   8篇
  2014年   29篇
  2013年   29篇
  2012年   29篇
  2011年   30篇
  2010年   12篇
  2009年   18篇
  2008年   9篇
  2007年   6篇
  2006年   9篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有288条查询结果,搜索用时 156 毫秒
51.
The thermal-mechanical properties of unsaturated polyester (UP) composite were enhanced by the dispersion of silica aerogel (SA) with preserved pores. Low-cost SA was prepared from rice husk via the sol-gel process and ambient pressure drying. A new method was proposed to encapsulate the hydrophobic aerogel surface pores with hydrophilic polyvinyl alcohol (PVA) film using the fluidized-bed coating process. The dispersion of PVA-coated aerogel with preserved pores in the polyester matrix resulted in an increase of specific compressive strength (44.1?MPa?·?cm3?g?1), thermal insulation (0.23?W?m?1?K?1), and thermal stability (Tonset?=?310°C), but decreased the glass transition temperature (Tg?=?260°C).  相似文献   
52.
Copper/carbon dot nanohybrids (Cu/CD NHs) were prepared via a facile precipitation method through a disproportionation reaction. The surface characterization was performed by various techniques such as XRD, FTIR and TEM. Then, water-based nanofluids composed of Cu/CD NHs at 0.1 and 0.5 mass% were prepared, and their thermo-physical properties including thermal conductivity, viscosity, density and specific heat were evaluated at various temperatures. The water-based Cu/CD nanofluid demonstrated to be a potential heat transfer fluid with a high stability. It was found that the thermal conductivity can be enhanced by increasing the nanoparticle concentration and temperature. Almost 1.25-fold increase in thermal conductivity has been achieved by raising the temperature up to 50 °C and at the concentration of 0.5 mass%. The heat capacity was found to increase with increasing concentration. Moreover, by increasing temperature the density and viscosity of the as-prepared nanofluid decreased, whereas the heat capacity showed an increasing trend.  相似文献   
53.
The utilization of microfluidic "lab-on-a-chip" devices in fundamental medical research, drug discovery and clinical diagnostics has rapidly increased in the past decade. Lab-on-a-chip devices process small volumes of analytes and reagents through on-chip microfluidic signal processing circuits. This paper discusses the implementation of a basic microfluidic circuit block, the concentration digital-to-analog converter (or C-DAC) which produces discretized chemical concentrations in a constant stream of solvent. The chemical concentration is controlled by a time-varying digital word; hence C-DACs are suitable for on-chip generation of arbitrary chemical signals. A 4-bit continuous-flow C-DAC was fabricated in two-level PDMS technology and tested. Several chemical waveforms (sawtooth, cosine, and ramp) were generated at flow rates of 2 microL min(-1) and frequencies of 0.6-4 mHz. The frequency cut off of this C-DAC was approximately 500 mHz.  相似文献   
54.
The presence of the magnetic anisotropy is clearly intimately related to the anisotropy nature of the artificial multilayer structure itself. We present here the behavior of magnetocrystalline anisotropy constants of the [Co3,2nmPt1,5nm]6 multilayer, as a function of the temperature and the external magnetic field observed by means of a torque magnetometer in an in-plane configuration. We have determined the magnetocrystalline anisotropy constants from the magnetic torque curves for different temperatures and in different magnetic fields, taking into account the angle difference between the directions of the external field and the magnetization. The most prominent result in this work consists in the need to introduce the anisotropy constant of third order in the analysis.  相似文献   
55.
56.
Most recent findings on structural and magnetic properties of Fe-Ni-Co nano-powders produced by mechanical alloying and subsequent low-temperature hydrogen reduction are presented in this paper. At 300 rpm, with ball to powder weight ratio of 20, single phase nickel-cobalt ferrite is mechanically synthesized for 50 h. The as-milled powder is then subjected to 1 h hydrogen reduction at 700 °C. Hydrogen reduction results in the formation of Fe-16.5%Ni-16.5%Co nano-powders. The phases of the powders are identified by X-ray diffraction (XRD) utilizing Cu Kα radiation. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to study the morphology and the average size of the nano-powder particles. Chemical analysis of the phases present in the reduced sample is determined by electron dispersive spectrometry (EDS). The magnetic properties of the powders are measured by a vibration sample magnetometer (VSM). Results indicate a noticeable change in the magnetic properties of the samples due to Ni0.5Co0.5Fe2O4 compositional change into Fe-16.5Ni-16.5Co nano-powder.  相似文献   
57.

Abstract  

p-Toluenesulfonic acid (10 mol%) was found to be an effective and efficient catalyst for the synthesis of 2-substituted benzothiazoles from aromatic aldehydes and 2-aminothiophenol in moderate to excellent yields in water. This method provides a simple and efficient protocol in terms of mild reaction conditions, clean reaction profiles, small quantity of catalyst, and simple workup procedure.  相似文献   
58.
59.
A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas–solid flows in vertical pneumatic conveyor. An axisymmetric 2-dimensional, vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain, same to that used for experimentation in the literature. The chosen particles are spherical, of diameter 1.91 mm and density 2500 kg/m3. Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles. Flow regimes transition and pressure drop were predicted. Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe. It was found that the voidage has a minimum, and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime. Slug length and pressure fluctuation reduction were predicted with increasing gas velocity, too. It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.  相似文献   
60.
Ternary blends of polypropylene/polycarbonate/poly(styrene-b-(ethylene-co-butylene)-b-styrene) (PP/PC/SEBS) with varying SEBS contents were produced via melt blending in a co-rotating twin-screw extruder. The phase morphology of the resulting ternary blends and its relationship with bending and impact behaviors were studied. Transmission optical microscopy (TOM) of the crack tip damage zone and scanning electron microscopy (SEM) of impact fractured surfaces were performed to characterize the fracture mechanism. With increasing SEBS content in the PP/PC/SEBS ternary blends, the number of PC/SEBS core-shell particles increased and the size of the core-shell particles enlarged. It was shown that with an SEBS content of 5%, the crack initiation resistance decreased and then was almost unchanged with further increase of SEBS content, while resistance to crack growth increased continuously with increasing of SEBS content. Preliminary analysis of the micromechanical deformation suggested that the high impact toughness observed for samples containing 20 and 30 wt% of SEBS could be attributed to cavitation of the rubbery shell and, consequently, shear yielding of the matrix. This plastic deformation absorbed a tremendous amount of energy. Due to low interfacial adhesion between PC particles and PP matrix in samples containing 5 and 10 wt% of SEBS, debonding occurred too early, so the occurrence of matrix shear yielding was delayed and resulted in premature interfacial failure and, hence, rapid crack propagation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号