首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   7篇
  国内免费   4篇
化学   151篇
晶体学   1篇
力学   6篇
数学   7篇
物理学   24篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   9篇
  2019年   8篇
  2018年   10篇
  2017年   12篇
  2016年   16篇
  2015年   10篇
  2014年   10篇
  2013年   23篇
  2012年   14篇
  2011年   15篇
  2010年   9篇
  2009年   13篇
  2008年   5篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  1998年   1篇
  1989年   1篇
排序方式: 共有189条查询结果,搜索用时 16 毫秒
51.
This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((?)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.  相似文献   
52.
Using van der Waals corrected density functional theory (vdW-DF) method we have investigated the adsorption of acetone molecule on pristine and Pt-doped graphene. Several active sites for both the interacting systems have been considered in the adsorption process including full geometry optimization. We have analyzed the structural and electrical properties of energetically favorable configurations. The results show that adsorption of acetone molecule on the Pt-doped graphene is energetically preferable. The binding energy and bonding distance are determined to be -5.277 eV and 2.206 Å, respectively, accompanying with charge transfer of 1.11 e. Furthermore, the Pt-O bond is rather significantly elongated when acetone is adsorbed on Pt-doped graphene. Compared to pristine graphene, the Pt-doped graphene has stronger interaction with the acetone and may provide more sensitive signal for a single acetone molecule. Meanwhile, practically, the band gap of Pt-doped graphene would become reduced after acetone adsorption. Consequently, our first-principles study presents evidence for a coherent benchmark for the applicability of Pt-doped graphene for acetone adsorption and detection.  相似文献   
53.
In this study, the synthesis, morphology, and thermal properties of amino acid containing polyimide/titania nanohybrid films are investigated. At first, a chiral diamine containing l-leucine moieties in the structure (synthesized previously) was polymerized with 4,4′-oxydiphthalic anhydride in extremely dry conditions. Resulted poly(amic acid) (PAA) was mixed with a moisture-sensitive titania precursor (tetraethyl orthotitanate [Ti(OEt)4]) and casted to a dust-free glass plate. The water derived from thermal imidization of PAA hydrolyzed Ti(OEt)4 to titania nanoparticles with almost spherical shapes. The thermogravimetric analysis of various nanocomposites confirms the improvement in the thermal stability with the increase in the percentage of titania nanoparticle. The transmission electron microscopy of nanohybrid films with 3%, 5%, and 10% w/w of titania contents confirms well dispersion of nanoparticles in the polymer ground. The X-ray diffraction spectra showed that the titania contents have amorphous structure.  相似文献   
54.
In this study several methods are described to determine the rate constant of a second-order reaction in the form of A+B→C. These approaches allow circumventing a rank deficiency inherent of a second-order reaction when the spectroscopic data is influenced by additional source of variance. Classically, to determine the unknown rate constant in this kind of systems, one needs to have extra knowledge about the system, including the spectra of the reactants or product and the exact kinetics. In the case of the presence of an unknown phenomenon in the data set that cannot be explained by the model, such as baseline drift, the estimated rate constant might be erroneous. Present work is a modification of the rank annihilation factor analysis (RAFA) algorithm by inclusion of I) pure spectra of reactants, or IIA) mean centering step, or IIB) mean spectrum. The proposed methods can interestingly be applied on a single kinetic run. The performances of the new methods have been evaluated by applying them to analysis of simulated and experimental data.  相似文献   
55.
In the current study, we present an intramolecular HB, molecular structure, π-electrons delocalization and vibrational frequencies analysis of 25 possible conformers of 1-(thionitrosomethylene) hydrazine by means of DFT (B3LYP), MP2 methods in conjunction with the 6-311++G** and augmented correlation-consistent polarized-valence triple-zeta basis sets and G2MP2 theoretical level. The influence of the solvent on the stability order of conformers and the strength of intramolecular hydrogen-bonding was considered using the Tomasi’s polarized continuum model. Statistical analyses of quantitative definitions of aromaticity, nucleus independent chemical shift, harmonic oscillator model of aromaticity, aromatic fluctuation index, and the π-electron delocalization parameter (Q) as a geometrical indicator of a local aromaticity, evaluated for this conformers. Further verification of the obtained transition state structures were implemented via intrinsic reaction coordinate (IRC) analysis. Calculations of the 1H NMR chemical shift at GIAO/B3LYP/6-311++G** levels of theory are also presented. The calculated highest occupied molecular orbital (MO) and lowest unoccupied MO energies show that charge transfer occur within the molecule. Hydrogen-bond energies for H-bonded conformers were obtained from Espinosa method and the natural bond orbital theory and the atoms in molecules theory were also applied to get a more precise insight into the nature of such H-bond interactions.  相似文献   
56.
Studies on the structure and physico-chemical properties of amyloid fibrils are important with regard to a better understanding of amyloid diseases such as Alzheimer’s. Insulin is used as a protein model which is easily driven toward amyloid formation. In the present study, five sets of 15 ns molecular dynamics simulations were performed on insulin in order to observe the initial structural changes that occur in the process of amyloid formation. Potential energy, RMSD, and secondary structure percentage of sampled structures were analyzed in all experiments. Common residues that undergo the first conformational changes were detected to be S9 and V10 of the A chain, as well as G8 and S9 of the B chain. The RMSD of truncated insulin increased much more than full-length insulin to about 18 Å. However, the beta-sheet structures percentage of full-length insulin, which is an indicative of amyloid formation, was higher than the truncated form in the presence of salt. This is indicative of the importance of the five residues of the B chain C-terminal in the insulin misfolding process. Overall, simulating full-length insulin under high temperature and in the presence of KCl could be used to assess amyloid formation and potential amyloid inhibitors of this protein.  相似文献   
57.
Journal of Sol-Gel Science and Technology - Considering the existing various sources that can supply the nano-biomaterials that are related to the Amorphous Calcium Phosphate (ACP) family, Aloe...  相似文献   
58.
A mononuclear Cu(II) complex with mixed ligands, formulated as [Cu(hypydc)(dmp)]·H2O (hypydc=4‐hydroxypyridine‐2,6‐dicarboxylate, dmp=2,9‐dimethyl‐1,10‐phenanthroline), was synthesized and well characterized by single crystal X‐ray diffraction analysis, as well as spectroscopic (IR, UV‐Vis), and electrochemical methods. The Cu(II) atom exhibits a distorted square‐pyramidal geometry. Intermolecular O? H···O and C? H···O hydrogen bonds, π‐π stacking interactions and C? H···π interactions seem to be effective in the stabilization of the crystal structure. The complex was also evaluated for its antimicrobial activity using in vitro microdilution methods. Six standard bacteria and a strain of Candida albicans were used for the antimicrobial activities. There was a very strong activity against Candida albicans and significant activities against Enterococcus fecalis, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus, indicating important biological activities of the complex.  相似文献   
59.
In this contribution, a novel label-free electrochemical biosensor for diclofenac (DCF) detection was developed using the unique properties of acid-oxidized carbon nanotubes (CNT), graphene oxide (GO), and Fe3O4 magnetic nanomaterials. The GO sheets and CNT were interlinked by ultrafine Fe3O4 nanoparticles forming three-dimensional (3D) architectures. The characterization of the nanocomposite was studied by scanning electron microscopy (SEM), energy-dispersive X-ray (EDS), and wavelength-dispersive X-ray (WDX) spectroscopy. Initially, aminated detection probe (aptamer) was surface-confined on the CNT/GO/Fe3O4 nanocomposite via the covalent amide bonds formed by the carboxyl groups on the CNT/GO and the amino groups on the oligonucleotides at the 5′ end. Our constructed folding-based electrochemical sensor was used for detection of target molecule utilizing structure-switching aptamers. Signaling arose from changes in electron transfer efficiency upon target-induced changes in the conformation of the aptamer probe. These changes were readily monitored using differential pulse voltammetry technique. This sensor exhibited binding affinities ranging from 100 to 1300 pM with a low detection limit of 33 pM.  相似文献   
60.
Thin films of a three-dimensional porous Zn(II)-based metal–organic framework, [Zn2(NH2-BDC)2(4-bpdb)] · 3DMF (TMU-17-NH2), containing azine-functionalized pores, were deposited on surfaces of silk fiber via a stepwise manner. The effect of sequential dipping steps in growth of TMU-17-NH2 has been studied. These systems depicted a decrease in the size accompanying a decrease in the sequential dipping steps. The TMU-17-NH2 has been used as matrices for the adsorption and in vitro guest delivery of methyldopa (MD).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号