首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   4篇
  国内免费   1篇
化学   126篇
晶体学   2篇
力学   9篇
数学   7篇
物理学   17篇
  2023年   1篇
  2021年   1篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   10篇
  2011年   23篇
  2010年   2篇
  2009年   5篇
  2008年   8篇
  2007年   17篇
  2006年   11篇
  2005年   9篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
  1956年   1篇
  1943年   2篇
排序方式: 共有161条查询结果,搜索用时 31 毫秒
41.
Molecular alignment is viewed as a permutation Procrustes problem, where the goal is to find the best assignment of points (or functional groups) in one molecule to the points in another molecule. A penalty function ensures that the optimal alignment respects the underlying connectivity between atoms/points. This method helps reveal why molecular alignment suffers from the curse of dimension.  相似文献   
42.
The electronegativity equalization principle states that, in its ground state, the electronegativity of every component in a system is the same. A paradox then arises: molecular fragments that are very far apart must still have the same electronegativity, which seems to contradict the common assumption that spatially separated molecular species can be described independently. Density-functional theory provides the tools needed to analyze this paradox at a fundamental level, and a resolution is found from the properties of the exact Hohenberg–Kohn functional. Specifically, there is no paradox because the electronegativity is not uniquely defined for separated systems. Instead, there is an “apparent electronegativity” that preserves locality. This may have implications for the treatment of charge-transfer excited states. A model for the energy as a function of the number of electrons is also presented. This model gives some insight into the utility of the grand canonical ensemble formulation (at nonzero temperature) and, unlike most previous models, this model recovers the appropriate behavior in the limits of infinitely separated and/or weakly interacting subsystems.  相似文献   
43.
44.
Treatment of THF solutions of [(n-Pr)2ATI]MCl (where [(n-Pr)2ATI]- = N-(n-propyl)-2-(n-propylamino)troponiminate; M = Ge and Sn) with sodium azide affords the compounds [(n-Pr)2ATI]MN3 in excellent yield. X-ray analyses revealed that these Ge(II) and Sn(II) compounds feature linear azide moieties and planar heterobicyclic C7N2M ring systems. Germanium and tin atoms adopt a pyramidal geometry. IR spectra of [(n-Pr)2ATI]GeN3 and [(n-Pr)2ATI]SnN3 display a nu asym(N3) band at 2048 and 2039 cm-1, respectively. DFT calculations on the corresponding methyl-substituted species demonstrate that the geometrical and electronic structure of these two species are very similar, and the dominant canonical form of the metal-azide moiety is M-N-N identical to N. The tin system is, as expected, slightly more ionic. A comparative CASSCF/DFT study on the model system H-Sn-N3 illustrates that the DFT approach is viable for the calculation of the structures of these species.  相似文献   
45.
Classical dynamics can be described with Newton's equation of motion or, totally equivalently, using the Hamilton-Jacobi equation. Here, the possibility of using the Hamilton-Jacobi equation to describe chemical reaction dynamics is explored. This requires an efficient computational approach for constructing the physically and chemically relevant solutions to the Hamilton-Jacobi equation; here we solve Hamilton-Jacobi equations on a Cartesian grid using Sethian's fast marching method. Using this method, we can--starting from an arbitrary initial conformation--find reaction paths that minimize the action or the time. The method is demonstrated by computing the mechanism for two different systems: a model system with four different stationary configurations and the H+H(2)-->H(2)+H reaction. Least-time paths (termed brachistochrones in classical mechanics) seem to be a suitable chioce for the reaction coordinate, allowing one to determine the key intermediates and final product of a chemical reaction. For conservative systems the Hamilton-Jacobi equation does not depend on the time, so this approach may be useful for simulating systems where important motions occur on a variety of different time scales.  相似文献   
46.
47.
48.
It was recently shown that the size consistency of the energy implies that, for any system with a rational number of electrons, the energy is given by the weighted average of the two systems with the nearest integer numbers of electrons. Specifically, E[N+P/Q] = (1−P/Q)E[N] + (P/Q)E[N+1]. This paper extends that analysis, showing that the same result holds for irrational numbers of electrons. This proves that the energy is a continuous function of the number of electrons, and justifies differentiation with respect to electron number, providing a rigorous justification or the density-functional theoretic approaches to chemical concepts like the electronegativity and the Fukui function. Similar results hold for properties other than the energy. Specific emphasis is placed on molecular response properties associated with the density-functional theory of chemical reactivity.  相似文献   
49.
A functional of external potentials and its variational principle for the ground-state energy is constructed. This potential functional formulation is dual to the density functional approach and provides a solution to the v-representability problem in the original Hohenberg-Kohn theory. A second potential functional for Kohn-Sham noninteracting systems establishes the foundation for the optimized effective potential approach and results in efficient approaches for ensemble Kohn-Sham calculations.  相似文献   
50.
For a linear combination of electron densities of degenerate ground states, it is shown that the value of any energy functional is the ground state energy, if the energy functional is exact for ground state densities, size consistent, and translational invariant. The corresponding functional of kinetic and interaction energy is the linear combination of the functionals of the degenerate densities. Without invoking ensembles, it is shown that the energy functional of fractional number electrons is a series of straight lines interpolating its values at integers. These results underscore the importance of grand canonical ensemble formulation in density functional theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号