首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   14篇
化学   77篇
晶体学   1篇
力学   1篇
数学   9篇
物理学   44篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   10篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   2篇
  2016年   14篇
  2015年   3篇
  2014年   7篇
  2013年   17篇
  2012年   5篇
  2011年   7篇
  2010年   2篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   9篇
  2005年   7篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
排序方式: 共有132条查询结果,搜索用时 78 毫秒
11.
12.
Boron–nitrogen dative bonds provide a suitable motif for reversible, yet strong and directed interactions, leading to the highly efficient self‐assembly of small organic building blocks into supramolecular cage structures. A bipyramidal [2+3] assembly, as the first example of a supramolecular cage mediated by B?N dative bonds that exists as a discrete species in solution, is quantitatively obtained from a tribenzotriquinacene‐based trisboronate ester and 1,4‐diazabicyclo[2.2.2]octane. Thermodynamic equilibria of cage formation are investigated by isothermal titration calorimetry and fully reversible cage opening can be observed at elevated temperatures.  相似文献   
13.
Topochemical transformations of layered materials CaX2 (X=Si, Ge) are the method of choice for the high‐yield synthesis of pristine, defect‐free two‐dimensional systems silicane and germanane, which have advanced electronic properties. Based on solid‐state dispersion‐corrected calculations, mechanisms for such transformations are elucidated that provide an in‐depth understanding of phase transition in these layered materials. While formation of such layered materials is highly favorable for silicane and germanane, a barrier of 1.2 eV in the case of graphane precludes its synthesis from CaC2 topochemically. The energy penalty required for distorting linear acetylene into a trans‐bent geometry accounts for this barrier. In contrast it is highly favorable in the heavier analogues, resulting in barrierless topochemical generation of silicane and germanane. Photochemical generation of the trans‐bent structure of acetylene in its first excited state (S1) can directly generate graphane through a barrierless condensation. Unlike the buckled structure of silicene, the phase‐h of CaSi2 with perfectly planar silicene layers exhibits the Dirac cones at the high symmetry points K and H. Interestingly, topochemical acidification of the cubic phase of calcium carbide is predicted to generate the previously elusive platonic hydrocarbon, tetrahedrane.  相似文献   
14.
Structures and electronic properties of clusters of an all-Si analogue of graphene, silicene, have been studied through quantum chemical calculations. The structures of the six-membered rings show interesting chair like puckering, which for large sheet-like clusters form ordered ripples. Binding energies, HOMO-LUMO gaps and polarizabilities for the silicene clusters show interesting monotonic trends analogous to polyacenes. Stacking of two silicene layers leads to the formation of closed 3D clusters with high symmetry and strong Si-Si bonds. The heat of hydrogenation of silicene to form silicanes is overwhelmingly exothermic and leads to the opening up of the HOMO-LUMO gaps. Thus, analogous to graphanes, silicanes are predicted to be interesting materials for hydrogen storage and for their band engineering properties.  相似文献   
15.
Nucleobases (adenine (A), thymine (T), cytosine (C), and guanine (G)) trapped within two metal clusters such as Au(3) undergo expansion. Our investigation reveals that this primarily arises due to the concomitant increase in all the bond lengths in molecules. Such expansion of the molecules can be qualitatively understood on the basis of classical harmonic potentials in the bonds and loss of aromaticity in the rings. Specifically, the highly electronegative O and N elements in the base pairs anchor to Au atoms and form X-Au bonds, which leads to charge redistribution within the molecules. As a very important consequence of this, the nature of the hydrogen bonds (in Au(3)-A...T-Au(3) and in Au(3)-G...C-Au(3)) change substantially within these electrodes in comparison to gas-phase structures. These hydrogen bonds have a single-well potential energy profile (of the type N...H...O and N...H...N) instead of double-well potentials (like N-H...O or N-H...N/ N...H-N types). A detailed energy calculation along the proton movement pathway supports our conclusions.  相似文献   
16.
17.
18.
Liquid Lennard-Jones clusters with magic number of atoms N = 55, 147, 309, 561 and 923 were cooled down in Monte Carlo simulations until freezing. Structural properties of the clusters, including the radial dependence of atomic concentration/density and the local regular structure in arrangement of atoms, just before freezing were analysed. Existence of spherical layers in atomic density around the centre of mass of liquid LJ clusters was confirmed. Formation of layers is explained by central net forces acting on every cluster atom and leading to positioning an atom close to the cluster centre of mass. The strong layering in small clusters of N = 55 and 147 affects atomic diffusion in radial and tangential directions inside the cluster, leading to easier movement of atoms on the layer surface. Analysis of radial profiles of four types of structural units detected in liquid clusters reveals that icosahedral units are the most numerous and are located mainly near cluster surface of all clusters and also in the centre of small clusters.  相似文献   
19.
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI/AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.  相似文献   
20.
Structural Chemistry - A systematic investigation has been carried out to assess the performance of various exchange–correlation energy density functionals coupled with various basis sets to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号