首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   83篇
化学   463篇
数学   36篇
物理学   2篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   14篇
  2019年   23篇
  2018年   12篇
  2017年   2篇
  2016年   37篇
  2015年   32篇
  2014年   17篇
  2013年   24篇
  2012年   43篇
  2011年   28篇
  2010年   19篇
  2009年   21篇
  2008年   42篇
  2007年   33篇
  2006年   31篇
  2005年   35篇
  2004年   17篇
  2003年   25篇
  2002年   8篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有501条查询结果,搜索用时 15 毫秒
41.
42.
43.
Comb copolymers containing both hydrogenated and fluorinated side‐chains were prepared by copolymerization using acrylic or methacrylic monomers in several ratios. The crystal structures of these copolymers and layer structures of their organized molecular films were investigated by wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering (SAXS), and out‐of plane X‐ray diffraction. Further, to selectively estimate the regularity of shorter fluorocarbon side‐chains, organized molecular films of copolymers were investigated by polarized near‐edge X‐ray adsorption fine structure (NEXAFS) spectroscopy. From the results of these measurements, it was inferred that these copolymers formed highly ordered layer structures, and a long spacing was predominantly determined by the arrangement of hydrogenated side‐chains, except in copolymers having extremely high fluorocarbon contents. In the case of the organized molecular films, the fluorinated side‐chains of methacrylate copolymers cannot form a highly ordered arrangement, whereas those of acrylate copolymers were oriented on monolayers. However, in both cases, the hydrogenated side‐chains predominantly formed layer structures in the organized films, and the fluorinated side‐chains did not contribute to the formation of the layer structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 534–546, 2008  相似文献   
44.
The magnetic circular dichroism (MCD) spectra of doubly and triply linked fused bisporphyrins (2MD and 2MT, M = Ni, Zn, Cu, Pd, and H2) and triply linked higher oligomers (3ZnT and 4ZnT) have been measured, and their Q-bands assigned based on the results of INDO/s calculations. In contrast to the Faraday A term observed for the Q(0,0) band of Ni(II) tetraphenylporphyrin, a single positive Faraday B term was observed for the lowest energy transition of the fused systems. The calculations indicated that the molecular orbitals (MOs) of the directly fused porphyrins consist of linear combinations of the constituent monomeric MOs, and that the effect of lowering the symmetry is always larger on the lowest unoccupied molecular orbital (LUMO) than on the highest occupied molecular orbital (HOMO). On the basis of Michl's perimeter model, these features can be correlated with the observed positive MCD signs in the near infrared region. A weak absorption band at 600-700 nm for the fused dimers can be assigned to a short-axis polarized Q transition.  相似文献   
45.
A triangulation of a closed surface is said to be d-covered if all of its edges are covered by vertices of degree d. We shall give constructive characterizations of 5- and 6-covered triangulations. Received: July 17, 1998?Final version received: January 12, 2000  相似文献   
46.
47.
48.
meso‐Triazolyl‐appended ZnII–porphyrins were readily prepared by CuI‐catalyzed 1,3‐dipolar cycloaddition of benzyl azide to meso‐ethynylated ZnII–porphyrin (click chemistry). In noncoordinating CHCl3 solvent, spontaneous assembly occurred to form tetrameric array ( 3 )2 from mesomeso‐linked diporphyrins 3 , and dodecameric porphyrin squares ( 4 )4 and ( 5 )4 from the L ‐shaped mesomeso‐linked triporphyrins 4 and 5 . The structures of these assemblies were examined by 1H NMR spectra, absorption spectra, and their gel permeation chromatography (GPC) retention time. Furthermore, the structures of the dodecameric porphyrin squares ( 4 )4 and ( 5 )4 were probed by small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) measurements in solution using a synchrotron source. Excitation‐energy migration processes in these assemblies were also investigated in detail by using both steady‐state and time‐resolved spectroscopic methods, which revealed efficient excited‐energy transfer (EET) between the mesomeso‐linked ZnII–porphyrin units that occurred with time constants of 1.5 ps?1 for ( 3 )2 and 8.8 ps?1 for ( 5 )4.  相似文献   
49.
50.
Let P be a point set on the plane, and consider whether P is quadrangulatable, that is, whether there exists a 2-connected plane graph G with each edge a straight segment such that V(G) = P, that the outer cycle of G coincides with the convex hull Conv(P) of P, and that each finite face of G is quadrilateral. It is easy to see that it is possible if and only if an even number of points of P lie on Conv(P). Hence we give a k-coloring to P, and consider the same problem, avoiding edges joining two vertices of P with the same color. In this case, we always assume that the number of points of P lying on Conv(P) is even and that any two consecutive points on Conv(P) have distinct colors. However, for every k ≥ 2, there is a k-colored non-quadrangulatable point set P. So we introduce Steiner points, which can be put in any position of the interior of Conv(P) and each of which may be colored by any of the k colors. When k = 2, Alvarez et al. proved that if a point set P on the plane consists of \({\frac{n}{2}}\) red and \({\frac{n}{2}}\) blue points in general position, then adding Steiner points Q with \({|Q| \leq \lfloor \frac{n-2}{6} \rfloor + \lfloor \frac{n}{4} \rfloor +1}\) , PQ is quadrangulatable, but there exists a non-quadrangulatable 3-colored point set for which no matter how many Steiner points are added. In this paper, we define the winding number for a 3-colored point set P, and prove that a 3-colored point set P in general position with a finite set Q of Steiner points added is quadrangulatable if and only if the winding number of P is zero. When PQ is quadrangulatable, we prove \({|Q| \leq \frac{7n+34m-48}{18}}\) , where |P| = n and the number of points of P in Conv(P) is 2m.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号